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Riemannian Optimization?

* (Euclidean) Optimization: f: R* - R

min f(x)
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* Riemannian Optimization: f:M - R
min f (x
min f (x)

M= a Riemannian manifold



Accel. Gradient Method!

 Yurii Nesterov 80’s

Accel. Gradient Descent:

Fort =0,1,2, ...
Xer1 = Ve + Aep1(Z — Ye)
Ver1r = Xe41 — Yerr VI (Xpg1)
Zey1 = Xeg1 + Ber1(Ze — Xe41) — Do VI (Xet1)



Accel. Gradient Method: Theory

 Yurii Nesterov 80’s

C.f. Gradient Descent: Nesterov showed: For u < V2f(x) < L
Foru<Vf(x) <L
N
fa) - fay <o (1-4)) f(”)‘f(x*)s{)((l_

For e-approx. solution,

For e-approx. solution,

We need 0 (ilog G)) many iterations. We only need t = 0 (\/%log G)) .

=>» Acceleration!
=»(and indeed optimal for this class!)



Natural Question..

* Could we develop such landmark result for curved
spaces (Riem. manifolds)?

* Turns out to be challenging question:

— Liu et al.’17 (NIPS) reduces the task to solving nonlinear
equations.

* Not clear whether whether these equations are even feasible or
tractably solvable.

— Alimisis et al.’20 (AISTATS): Continuous dynamic approach
* Not clear whether the discretization yields accel.

— Most concrete result: Zhang-Sra'18 (COLT)
* proposed an alg. guaranteed to accel. locally.

Global accel? = Open!



Challenge!

* Nesterov’s analysis is called the Estimate Sequence
technique

* Nesterov's analysis relies on linear structure!
— not clear if it generalizes to non-linear space like Riem. manifolds.

* Nesterov’s analysis entails non-trivial algebraic tricks!
— Hard to understand; its scope has puzzled researchers for years.



Riemannian Accel. GD

(Euclidean) Accel. Gradient Descent:

Xes1 = Ve + App1(Ze — V)
Ver1 = Xew1 — Vee1 VI (Xp41)
Zer1 = Xep1 t Per1(Ze — Xer1) — Nes1 VI (Xp41)

Riemannian Accel. Gradient Descent:
Xe+1 = Expy, (“t+1 Expyl(zt))
Yt+1 — ExPle(_VHl ‘ Vf(xt+1))
Zey1 = EXpy, (,Bt+1 Expxtﬂ(zt) 77t+1\7f(xt+1))

Space is curved, causes “distortion”



1. How does this affect the convergence rate?

Severer the distortion gets,
Slower the convergence rate becomes!

A

No matter how severe the distortion
Riem. AGD always faster than RGD!

R

To achieve full accel. i.e. \/u/L,
we need bring 6 down to 1!

u/L Vu/L 1

How do we control/estimate the distortion?



Global Accel for Riem. Case!

Thm 2. Given: o >0

- the magnitude of metric distortion
Find &4 € (2uA, 1) such that A
St+1(Se+1=208) _ 1 "o
(1—$¢+1) Se+1 "

where 6;,1 = T(d(x;, z;)) for some computable function T.

fee) — f(x) < 0((1 — &)1 —=&) - (1 - Et+1))

s.t. (1)& > u/L forall t. (2) &, quickly converges to /u/L.

strictly faster than (nonaccel) GD! quickly acheives full acceleartion!



Open problem

Obtaining acceleration the non-strongly convex case?

Remarks

* Using strongly convex perturbation can be done

* But, extra O(log 1/€) factor

* More crucially, our current proof needs to ensure all
iterates remain within a set of specific size to be able
to ensure acceleration. Removing this limitation is valuable



