

From Nesterov's Estimate Sequence To Riemannian Acceleration

Kwangjun Ahn, Suvrit Sra COLT 2020 arXiv: https://arxiv.org/abs/2001.08876

Riemannian Optimization?

- (Euclidean) Optimization: $f: \mathbb{R}^n \to \mathbb{R}$ $\min_{x \in \mathbb{R}^n} f(x)$
- Riemannian Optimization: $f: M \to \mathbb{R}$

 $\min_{x\in M}f(x)$

M= a Riemannian manifold

Accel. Gradient Method!

Yurii Nesterov 80's

```
Accel. Gradient Descent:

For t = 0,1,2,...

x_{t+1} = y_t + \alpha_{t+1}(z_t - y_t)

y_{t+1} = x_{t+1} - \gamma_{t+1} \nabla f(x_{t+1})

z_{t+1} = x_{t+1} + \beta_{t+1}(z_t - x_{t+1}) - \eta_{t+1} \nabla f(x_{t+1})
```

Accel. Gradient Method: Theory

- Yurii Nesterov 80's
- C.f. Gradient Descent: For $\mu \leq \nabla^2 f(x) \leq L$ $f(x_t) - f(x_*) \leq O\left(\left(1 - \frac{\mu}{L}\right)^t\right)$

For ϵ -approx. solution,

We need $O\left(\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)$ many iterations.

Nesterov showed: For $\mu \leq \nabla^2 f(x) \leq L$ $f(y_t) - f(x_*) \leq O\left(\left(1 - \sqrt{\frac{\mu}{L}}\right)^t\right)$ For ϵ -approx. solution, We only need $t \geq O\left(\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\epsilon}\right)\right)$.

➔ Acceleration!

→(and indeed optimal for this class!)

Natural Question..

- Could we develop such landmark result for curved spaces (Riem. manifolds)?
- Turns out to be challenging question:
 - Liu et al.'17 (*NIPS*) reduces the task to solving nonlinear equations.
 - Not clear whether whether these equations are even feasible or tractably solvable.
 - Alimisis et al.'20 (AISTATS): Continuous dynamic approach
 - Not clear whether the discretization yields accel.
 - Most concrete result: Zhang-Sra'18 (COLT)
 - proposed an alg. guaranteed to accel. **locally**.

Global accel? → Open!

Challenge!

- Nesterov's analysis is called the *Estimate Sequence* technique
- Nesterov's analysis relies on **linear** structure!
 - not clear if it generalizes to **non-linear space** like Riem. manifolds.
- Nesterov's analysis entails non-trivial algebraic tricks!
 - Hard to understand; its scope has puzzled researchers for years.

Riemannian Accel. GD

(Euclidean) Accel. Gradient Descent: $x_{t+1} = y_t + \alpha_{t+1}(z_t - y_t)$ $y_{t+1} = x_{t+1} - \gamma_{t+1} \nabla f(x_{t+1})$ $z_{t+1} = x_{t+1} + \beta_{t+1}(z_t - x_{t+1}) - \eta_{t+1} \nabla f(x_{t+1})$

Riemannian Accel. Gradient Descent: $x_{t+1} = Exp_{y_t} \left(\alpha_{t+1} \cdot Exp_{y_t}^{-1}(z_t) \right)$ $y_{t+1} = Exp_{x_{t+1}} \left(-\gamma_{t+1} \cdot \nabla f(x_{t+1}) \right)$ $z_{t+1} = Exp_{x_{t+1}} \left(\beta_{t+1} \cdot Exp_{x_{t+1}}^{-1}(z_t) - \eta_{t+1} \nabla f(x_{t+1}) \right)$

Space is curved, causes "distortion"

1. How does this affect the convergence rate?

How do we control/estimate the distortion?

Global Accel for Riem. Case!

Thm 2. Given:
$$\xi_0 > 0$$

Find $\xi_{t+1} \in (2\mu\Delta, 1)$ such that
 $\frac{\xi_{t+1}(\xi_{t+1}-2\mu\Delta)}{(1-\xi_{t+1})} = \frac{1}{\delta_{t+1}} \xi_t^2$
where $\delta_{t+1} = T(d(x_t, z_t))$ for some computable function *T*.
 $f(y_{t+1}) - f(x_*) \leq O(((1 - \xi_1)(1 - \xi_2) \cdots (1 - \xi_{t+1})))$
s.t. (1) $\xi_t > \mu/L$ for all *t*. (2) ξ_t quickly converges to $\sqrt{\mu/L}$.

strictly **faster** than (nonaccel) GD! quickly acheives **full** acceleartion!

Obtaining acceleration the non-strongly convex case?

Remarks

- ★ Using strongly convex perturbation can be done
- ★ But, extra $O(\log 1/\epsilon)$ factor
- More crucially, our current proof needs to ensure all iterates remain within a set of specific size to be able to ensure acceleration. Removing this limitation is valuable