Cutting Convex Sets With Margin

Shay Moran (Google AI and Technion)

Background

- A geometric problem that arises in *Density Estimation*
- Density Estimation = Distribution Learning w.r.t Total Variation
- Progress on problem ⇒ improved sample complexity bounds for optimal density estimators
- Based on joint works with

Olivier Bousquet, Mark Braverman, Klim Efremenko, Daniel Kane, and Gillat Kol

The Game

- Fix a norm $\|\cdot\|$ on \mathbb{R}^d and $\epsilon > 0$
- $B(\vec{x}, r) = \text{ball of radius } r \text{ around } \vec{x}$

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t disjoint from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t disjoint from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t disjoint from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t disjoint from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t disjoint from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t disjoint from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

Round	
5	

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

Cutting Game

- Player versus Adversary
- $B_0 = B(\vec{0}, 1)$
- At round t = 0, 1, ...
 - Player picks $\vec{x}_t \in B_t$
 - Adversary picks halfspace H_t **disjoint** from $B(\vec{x}_t, \epsilon)$
 - Update $B_{t+1} = B_t \cap H_t$
- Player wants to reach $B_t = \emptyset$ as fast as possible

Player wins at round t = 6

The Problem

 $T(\|\cdot\|, d, \epsilon)$: = min number of rounds T s.t. player has a strategy that guarantees $B_T = \emptyset$ against any adversary

Goal. Provide tight bounds on $T(\|\cdot\|, d, \epsilon)$

• Arbitrary norms?

\\can be further extended to convex sets

• Norm = ℓ_p ?

Known Bounds

 $T(\|\cdot\|, d, \epsilon)$: = min number of rounds T s.t. player has a strategy that guarantees $B_T = \emptyset$ against any adversary

Goal. Provide tight bounds on $T(\|\cdot\|, d, \epsilon)$

• $(\forall \operatorname{norm} \|\cdot\|)$: $T \leq O(d \log 1/\epsilon)$

•
$$(\exists \text{ norm } \|\cdot\|): T \ge \Omega(d \log 1/\epsilon)$$
 $(\|\cdot\|) = \ell_{\infty}$

Known Bounds

 $T(\|\cdot\|, d, \epsilon)$: = min number of rounds T s.t. player has a strategy that guarantees $B_T = \emptyset$ against any adversary

Goal. Provide tight bounds on $T(\|\cdot\|, d, \epsilon)$

 $\ell_{1}:$ • $T \leq O\left(\frac{\log d}{\epsilon^{2}}\right)$ • $T \geq \Omega\left(\frac{\log d}{\epsilon}\right)$

\\related to optimal density estimator

$$\smallsetminus d \geq \widetilde{\Omega}\left(\frac{1}{\epsilon^2}\right)$$

• $\ell_p \text{ for } p \in (1,2]: T \le O_p\left(\frac{1}{\epsilon^2}\right)$

 $\$ of d

•
$$\ell_p$$
 for $p \in (2, \infty)$: $T \le O\left(\frac{d^{1-\frac{2}{p}}}{\epsilon^2}\right)$

Thank you!