Cutting Convex Sets With Margin

Shay Moran (Google AI and Technion)

Background

- A geometric problem that arises in Density Estimation
- Density Estimation = Distribution Learning w.r.t Total Variation
- Progress on problem \Longrightarrow improved sample complexity bounds for optimal density estimators
- Based on joint works with

Olivier Bousquet, Mark Braverman, Klim Efremenko, Daniel Kane, and Gillat Kol

The Game

- Fix a norm $\|\cdot\|$ on \mathbb{R}^{d} and $\epsilon>0$
- $B(\vec{x}, r)=$ ball of radius r around \vec{x}

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $\quad \boldsymbol{B}_{\mathbf{0}}=\boldsymbol{B}(\overrightarrow{\mathbf{0}}, \mathbf{1})$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\varnothing$ as fast as possible

Example: ℓ_{1} in 2 dimensions

Cutting Game

- Player versus Adversary

Round
$B_{0}=B(\overrightarrow{0}, 1)$

- At round $t=0,1, \ldots$
- Player picks $\overrightarrow{\boldsymbol{x}}_{\boldsymbol{t}} \in \boldsymbol{B}_{\boldsymbol{t}}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$

1

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \boldsymbol{\epsilon}\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\varnothing$ as fast as possible

Round
1

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$

Round
1

- Update $\boldsymbol{B}_{\boldsymbol{t}+\mathbf{1}}=\boldsymbol{B}_{\boldsymbol{t}} \cap \boldsymbol{H}_{\boldsymbol{t}}$
- Player wants to reach $B_{t}=\varnothing$ as fast as possible

Example: ℓ_{1} in 2 dimensions

Cutting Game

- Player versus Adversary
- $\quad B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\overrightarrow{\boldsymbol{x}}_{\boldsymbol{t}} \in \boldsymbol{B}_{\boldsymbol{t}}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$

- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: ℓ_{1} in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \boldsymbol{\epsilon}\right)$

Round
2

- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\varnothing$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$

Round

- Update $\boldsymbol{B}_{\boldsymbol{t}+\mathbf{1}}=\boldsymbol{B}_{\boldsymbol{t}} \cap \boldsymbol{H}_{\boldsymbol{t}}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\overrightarrow{\boldsymbol{x}}_{\boldsymbol{t}} \in \boldsymbol{B}_{\boldsymbol{t}}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$

Round
3

- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: ℓ_{1} in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \boldsymbol{\epsilon}\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Round
3

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$

Round
3

- Update $\boldsymbol{B}_{\boldsymbol{t}+\mathbf{1}}=\boldsymbol{B}_{\boldsymbol{t}} \cap \boldsymbol{H}_{\boldsymbol{t}}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\varnothing$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $\quad B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \boldsymbol{\epsilon}\right)$

Round

- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $\quad B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$
- Update $\boldsymbol{B}_{\boldsymbol{t}+\mathbf{1}}=\boldsymbol{B}_{\boldsymbol{t}} \cap \boldsymbol{H}_{\boldsymbol{t}}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $\quad B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\overrightarrow{\boldsymbol{x}}_{\boldsymbol{t}} \in \boldsymbol{B}_{\boldsymbol{t}}$

Round
5

- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: ℓ_{1} in 2 dimensions

Cutting Game

- Player versus Adversary

Round
$B_{0}=B(\overrightarrow{0}, 1)$

- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \boldsymbol{\epsilon}\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: $\boldsymbol{\ell}_{1}$ in 2 dimensions

Cutting Game

- Player versus Adversary
- $\quad B_{0}=B(\overrightarrow{0}, 1)$
- At round $t=0,1, \ldots$
- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$

Round

- Update $\boldsymbol{B}_{\boldsymbol{t}+\mathbf{1}}=\boldsymbol{B}_{\boldsymbol{t}} \cap \boldsymbol{H}_{\boldsymbol{t}}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Example: ℓ_{1} in 2 dimensions

Cutting Game

- Player versus Adversary

Round
$B_{0}=B(\overrightarrow{0}, 1)$
At round $t=0,1, \ldots$

- Player picks $\vec{x}_{t} \in B_{t}$
- Adversary picks halfspace H_{t} disjoint from $B\left(\vec{x}_{t}, \epsilon\right)$
- Update $B_{t+1}=B_{t} \cap H_{t}$
- Player wants to reach $B_{t}=\emptyset$ as fast as possible

Player wins at round $t=6$

The Problem

$T(\|\cdot\|, d, \epsilon):=\min$ number of rounds T s.t. player has a strategy that guarantees $B_{T}=\emptyset$ against any adversary

Goal. Provide tight bounds on $T(\|\cdot\|, d, \epsilon)$

- Arbitrary norms?
- $\operatorname{Norm}=\ell_{p}$?

Known Bounds

$T(\|\cdot\|, d, \epsilon):=\min$ number of rounds T s.t. player has a strategy that guarantees $B_{T}=\emptyset$ against any adversary

Goal. Provide tight bounds on $T(\|\cdot\|, d, \epsilon)$

- $(\forall$ norm $\|\cdot\|): T \leq O(d \log 1 / \epsilon)$
- $(\exists$ norm $\|\cdot\|): T \geq \Omega(d \log 1 / \epsilon) \quad\|\backslash\| \cdot \|=\ell_{\infty}$

Known Bounds

$T(\|\cdot\|, d, \epsilon):=\min$ number of rounds T s.t. player has a strategy that guarantees $B_{T}=\emptyset$ against any adversary

Goal. Provide tight bounds on $T(\|\cdot\|, d, \epsilon)$

- ℓ_{1} :

related to optimal density estimator

- $T \leq O\left(\frac{\log d}{\epsilon^{2}}\right)$
- $T \geq \Omega\left(\frac{\log d}{\epsilon}\right)$
$\backslash \backslash d \geq \widetilde{\Omega}\left(\frac{1}{\epsilon^{2}}\right)$
- ℓ_{p} for $p \in(1,2]: T \leq O_{p}\left(\frac{1}{\epsilon^{2}}\right)$
\backslash indepenent of d
- ℓ_{p} for $p \in(2, \infty): T \leq O\left(\frac{d^{1-\frac{2}{p}}}{\epsilon^{2}}\right)$

Thank

you!

