
Perfect Imitation and Secure Asymmetry for Decoy Routing Systems with Slitheen

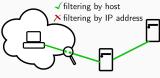
Cecylia Bocovich

Ian Goldberg

20 June 2017 EPFL Summer Research Institute

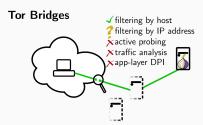
Censorship

Censors may monitor, alter or block traffic that enters or leaves their area of influence.

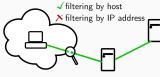

1

Censorship Strategies

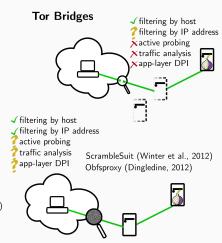
Censorship measurement studies in Iran [Aryan et al.], Pakistan [Nabi et al.], and China [Winter and Lindskog] show the following techniques:

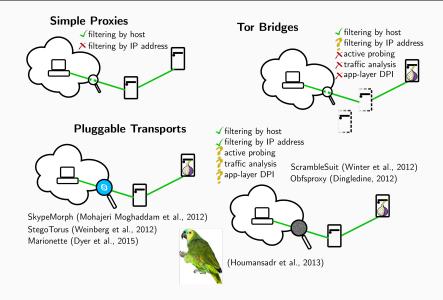

- Filtering by IP address
- Filtering by hostname
- Protocol-specific throttling
- URL keyword filtering
- Active probing
- Application-layer DPI

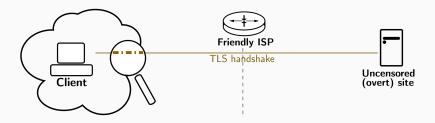
Simple Proxies

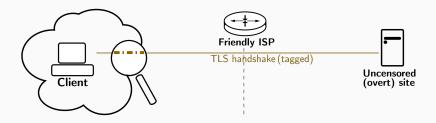


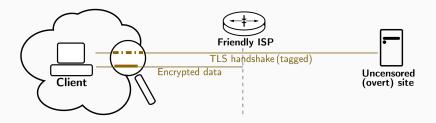
Simple Proxies

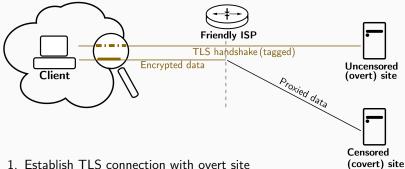

Simple Proxies



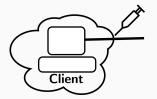

Pluggable Transports


SkypeMorph (Mohajeri Moghaddam et al., 2012) StegoTorus (Weinberg et al., 2012) Marionette (Dyer et al., 2015)



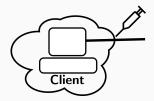

1. Establish TLS connection with overt site

- 1. Establish TLS connection with overt site
- Steganographically share TLS master secret with friendly ISP (Wustrow et al., 2011) (Houmansadr et al., 2011) (Karlin et al., 2011) (Wustrow et al., 2014) (Ellard et al., 2015)



- 1. Establish TLS connection with overt site
- Steganographically share TLS master secret with friendly ISP (Wustrow et al., 2011) (Houmansadr et al., 2011) (Karlin et al., 2011) (Wustrow et al., 2014) (Ellard et al., 2015)
- 3. Sever or abandon connection to the overt site

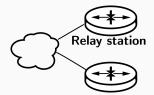
- 1. Establish TLS connection with overt site
- Steganographically share TLS master secret with friendly ISP (Wustrow et al., 2011) (Houmansadr et al., 2011) (Karlin et al., 2011) (Wustrow et al., 2014) (Ellard et al., 2015)
- 3. Sever or abandon connection to the overt site
- 4. Proxy information between client and covert site


```
(Wustrow et al., 2011)
(Schuchard et al., 2012)
```

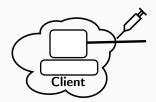

Active Attacks

- Replay attacks
- Man in the middle

(Wustrow et al., 2011) (Schuchard et al., 2012)



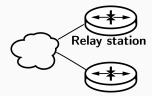
Active Attacks

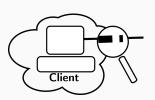

- Replay attacks
- Man in the middle

Routing-Based (RAD) Attacks

- TCP replay
- Crazy Ivan

(Wustrow et al., 2011) (Schuchard et al., 2012)

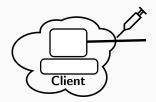



Active Attacks

- Replay attacks
- Man in the middle

Routing-Based (RAD) Attacks

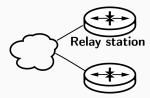
- TCP replay
- Crazy Ivan

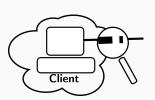


Passive Attacks

- Traffic analysis
- Latency analysis

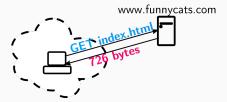
(Wustrow et al., 2011) (Schuchard et al., 2012)

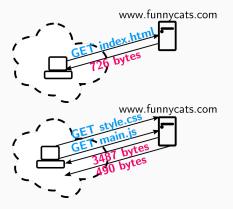


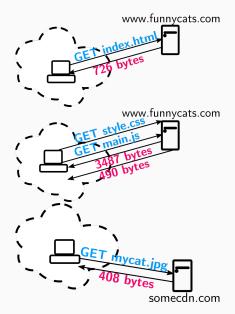

Active Attacks

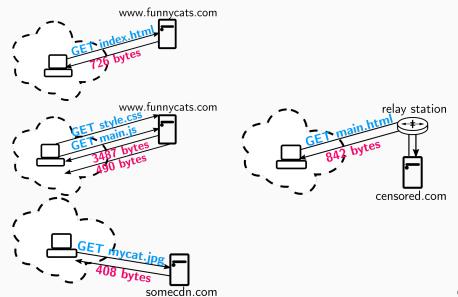
- Replay attacks
- Man in the middle*

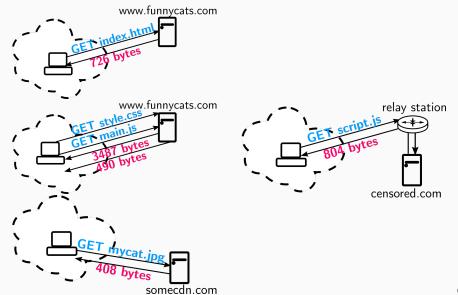
Routing-Based (RAD) Attacks

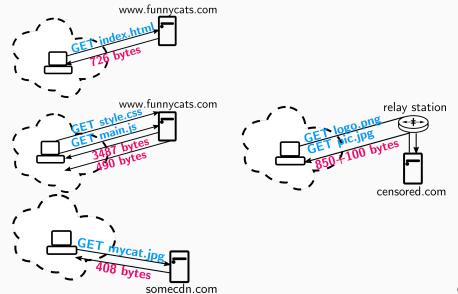

- TCP replay*
- Crazy Ivan

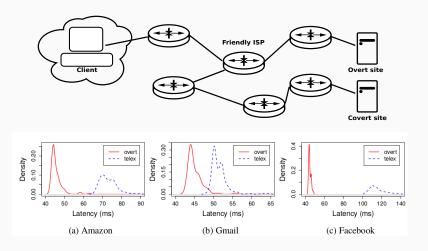





Passive Attacks

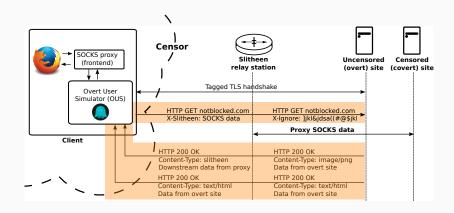

- Traffic analysis
- Latency analysis





Latency Analysis

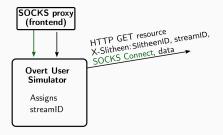
(Schuchard et al., 2012)

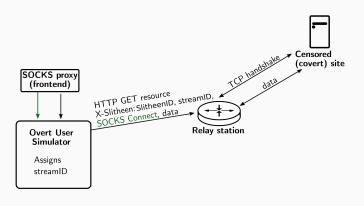

Slitheen

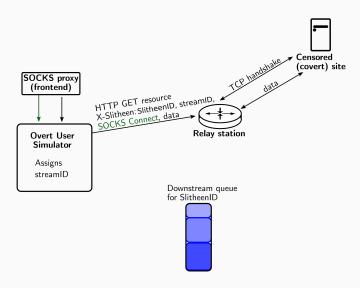
Slitheen traffic patterns to overt destinations **are identical to** a regular access to the overt site.

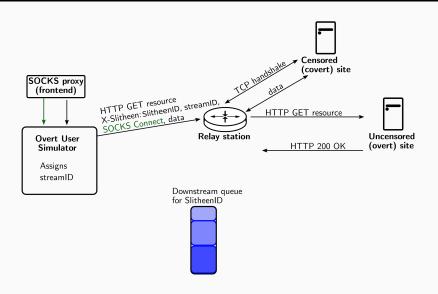
Covert content is squeezed into "leaf" resources (images, videos, etc.) that do not affect future connections for additional overt resources.

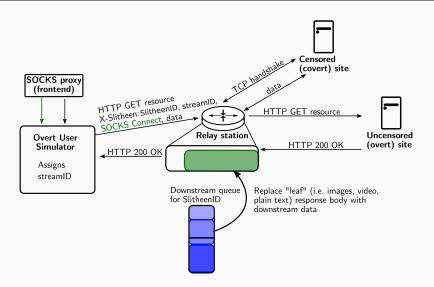
Architecture Overview

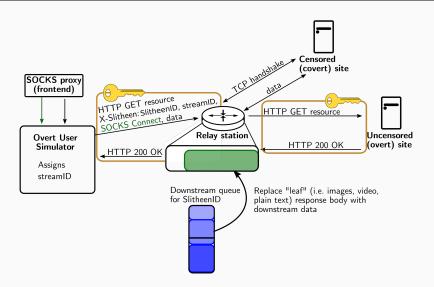


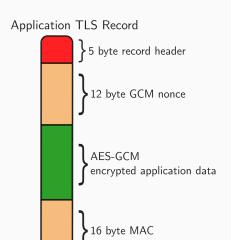

• Relay station has keypair (r, g^r)

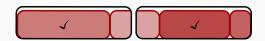

- Relay station has keypair (r, g^r)
- Client picks s, uses $g^s || H_1(g^{rs} || \chi)$ as ClientHello random
 - Relay station (and only the relay station) can recognize the tag


- Relay station has keypair (r, g^r)
- Client picks s, uses $g^s || H_1(g^{rs} || \chi)$ as ClientHello random
 - Relay station (and only the relay station) can recognize the tag
- Client uses $H_2(g^{rs}||\chi)$ as (EC)DHE private key
 - Relay station can compute the TLS master secret and MITM the connection


- Relay station has keypair (r, g^r)
- Client picks s, uses $g^s \| H_1(g^{rs} \| \chi)$ as ClientHello random
 - Relay station (and only the relay station) can recognize the tag
- Client uses $H_2(g^{rs}||\chi)$ as (EC)DHE private key
 - Relay station can compute the TLS master secret and MITM the connection
- Relay station modifies the server's Finished message to alert the client that Slitheen is active

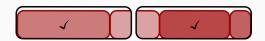






TLS Record Format

- Encrypted HTTP responses are sent from the overt site in a series of TLS records
- TLS records can be (and often are) fragmented across packets
- We do not delay packets at the relay station to reconstruct records


Finding Leaves

We can only decrypt a record after receiving all of it.

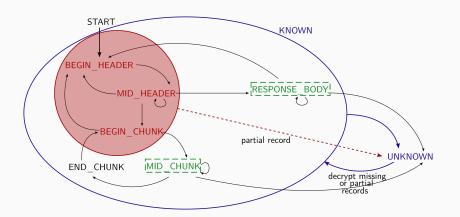
Finding Leaves

We can only decrypt a record after receiving **all** of it.

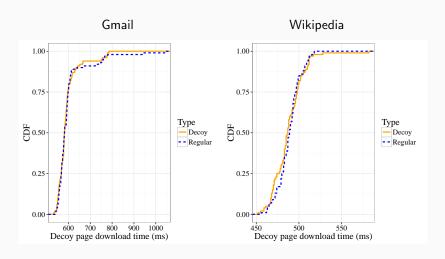
We only need to **decrypt the HTTP response header** to find leaves.

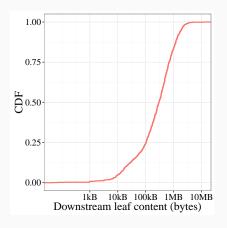
Finding Leaves

We can only decrypt a record after receiving all of it.



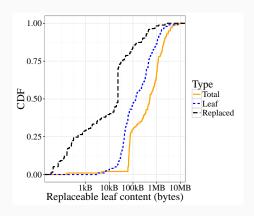
We only need to **decrypt the HTTP response header** to find leaves.


Misordered packets further complicate our decisions.


HTTP States

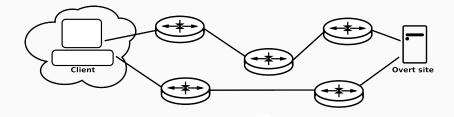
Latency Results

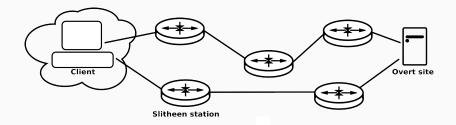
Bandwidth

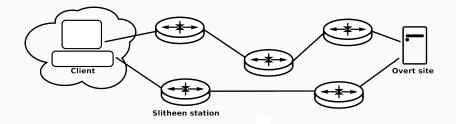


Downstream leaf content from the Alexa top 10,000 TLS sites

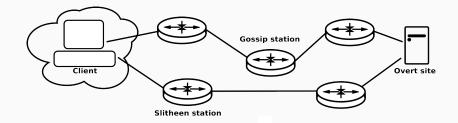
- Roughly 25% of all sites offer 500 kB or more of potentially replaceable content
- About 40% of traffic across all sites was leaf content

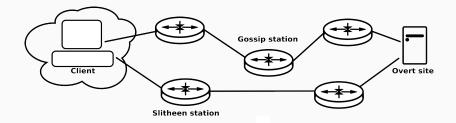

Realistic Bandwidth


Site name	Leaf content (bytes)	% leaf content replaced	% total replaced	
Gmail	8800 ± 100	87.7 ± 0.2	23 ± 9	
Wikipedia	24000 ± 2000	$100{\pm}0$	33 ± 4	
Yahoo	400000 ± 100000	$100.0 \pm\! 0.2$	$40{\pm}20$	
Facebook	40000 ± 10000	0 ± 0	0 ±0	

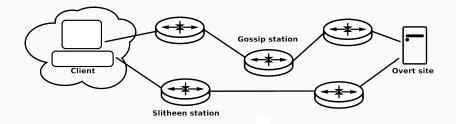

Comparison

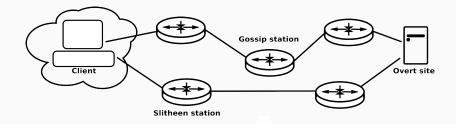
√e)(st Ch	inede	veball	on Rep	Dound Slithe
0	0	0	•	0	0
0	•	0	•	•	0
•	•	•	0	•	
0	0	0	0	•	
0	0	0	0	0	
0	0	\circ	\circ	\circ	0
	✓el	\[\cdot \frac{1}{2} \cdot \frac{1}{	~ele+ cirite ele	Tele* Cirile Curve Tal	Tele* Cirile Curveta all Parce




- Slitheen station is on downstream path
 - Opposite to TapDance, Rebound

- Slitheen station is on downstream path
 - Opposite to TapDance, Rebound
- How does it identify tagged flows and learn the TLS master secret?


- Lightweight gossip station on upstream path
 - No flow blocking; just gets a copy of TLS flows
 - When it sees a TLS ClientHello (without having seen a TCP SYN ACK), broadcast it to Slitheen stations
 - If a Slitheen station claims the tag, send upstream TLS data to it


- But surely that upstream ClientHello won't get from the gossip station to the Slitheen station in time?
 - The Slitheen station needs it before the TLS handshake completes so that it can read and modify the Finished message

- Key idea: the client's Slitheen secret s on its next connection to that
 overt site will be selected as a function of the previous client-relay
 shared secret
 - The first connection acts as a Cirripede-esque registration
 - The Slitheen station can then predict that client's future ClientHello messages!

- Gossip stations offer a two-tiered deployment strategy
- No need for flow-blocking or traffic replacement routers
 - So easier to deploy

- Easier for censor to perform RAD attack on upstream data (change routing for that one flow) than downstream (advertise new BGP route to everyone)
 - Put lots of cheap gossip stations on possible upstream paths
 - More heavyweight Slitheen stations on more stable downstream paths

Comparison

Summary

- Slitheen is a new proposal for a decoy routing system
- Slitheen addresses previously undefended passive attacks
- Our results show no discernible difference in latency between a "decoy access" to an overt destination and a regular access
- By design, Slitheen defends against website fingerprinting attacks by maintaining packet sizes, timings, and directionality
- The gossip protocol addresses the major challenges to deployability:
 RAD attacks, asymmetric flows, and concerns over inline blocking
- Implementation and source code of Slitheen (but not yet the gossip protocol) available:
 - https://crysp.uwaterloo.ca/software/slitheen/