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Transport Layer Security (TLS) 1.3

Next version of the most popular secure channel protocol.

Completely redesigned from TLS 1.2
After 20 drafts, on the verge of standardization

Why did we need a new protocol?

Security: remove broken legacy crypto constructions
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Attacks against TLS 1.2

RC4 Keystream biases [Mar’13]
Lucky13 MAC-Encode-Encrypt CBC [Mar’13]
POODLE SSLv3 MAC-Encode-Encrypt [Dec’14]
FREAK Export-grade 512-bit RSA [Mar’15]
LOGJAM Export-grade 512-bit DH [May’15]
SLOTH RSA-MD5 signatures [Jan’16]
DROWN SSLv2 PSA-PKCS#1v1.5 Enc [Mar’16]
SWEET32 3DES Encryption [Oct’16]
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Transport Layer Security (TLS) 1.3

Next version of the most popular secure channel protocol.

Completely redesigned from TLS 1.2
After 20 drafts, on the verge of standardization

Why did we need a new protocol?

Security: remove broken legacy crypto constructions
Efficiency: reduce handshake roundtrip latency

0-RTT when the client and server have a pre-shared key
0.5-RTT

These are potentially contradictory goals

Needs extensive security analysis before deployment!
The IETF called for academics to formally analyze the protocol drafts.
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Analyzing TLS 1.3

Many published analyses for intermediate TLS 1.3 drafts

Cryptography proofs (of drafts 5,9,10)
[Dowling et al. CCS’15, Krawczyk et al. EuroS&P’16, Li et al. S&P’16]

Symbolic protocol analysis (of draft 10)
[Cremers et al. S&P’16]

Verified implementation (of draft 18 record protocol)
[Bhargavan et al. S&P’17]

Symbolic and computational proofs (of draft 18)
[Bhargavan et al. S&P’17; this talk]

Are we done? Is it secure?

If we deploy TLS 1.3, will it expose new attacks?
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TLS 1.2 and its proofs: a checkered history

Historically, published proofs of TLS missed many attacks
Large gaps between simplified models and the deployed protocol

1 Proofs ignored “ugly” implementation details

e.g. AES-CBC padding, RSA-PKCS#1v1.5 padding

2 Proofs relied on strong crypto assumptions on primitives

e.g. collision resistant hash functions, strong Diffie-Hellman groups

3 Proofs ignored composition with obsolete/unpopular modes

e.g. SSLv2, EXPORT ciphers, renegotiation

How do we ensure that TLS 1.3 proofs do not fall into these traps?
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Our approach

Use automated verification tools to handle protocol complexity

Easy to extend as protocol evolves, or as we model new features

Symbolically analyze protocol against known attack vectors

Find or prove the absence of downgrade attacks to TLS 1.2 (using
ProVerif)

Build a mechanically-checked cryptographic proof of TLS 1.3

Explore the crypto assumptions needed by TLS 1.3 (using
CryptoVerif)

Synchronize verified models with RFC and its implementations

Extract ProVerif model from an interoperable implementation
(RefTLS)
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Our vision: one model, three tasks

Protocol fix
TLS 1.3 Model

Potential
attack

ProVerif CryptoVerif

Symbolic
proof

Cryptographic
proof

Reference im-
plementation

Other TLS
libraries

Interop testing

(Inspired by: Verified interoperable implementations of security protocols, TOPLAS 2008.)
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Our current toolchain

Protocol fix TLS 1.3 Core
protocol code

Model
extraction

TLS 1.3
Symbolic model

TLS 1.3
Crypto model

Potential
attack

ProVerif CryptoVerif

Symbolic
proof

Cryptographic
proof

Reference im-
plementation

Other TLS
libraries

Interop testing

manual edits
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Symbolic analysis to find downgrade (and other) attacks

Recent attacks on legacy crypto in TLS:

RC4 Keystream biases [Mar’13]
Lucky13 MAC-Encode-Encrypt CBC [Mar’13]
POODLE SSLv3 MAC-Encode-Encrypt [Dec’14]
FREAK Export-grade 512-bit RSA [Mar’15]
LOGJAM Export-grade 512-bit DH [May’15]
SLOTH RSA-MD5 signatures [Jan’16]
DROWN SSLv2 PSA-PKCS#1v1.5 Enc [Mar’16]

Legacy crypto remains in TLS libraries for backwards compatibility.
Is TLS 1.3 secure, if it is deployed alongside older versions of TLS?

Can a man-in-the-middle downgrade TLS 1.3 peers to use legacy
crypto?
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Modeling weak crypto in ProVerif

Classic symbolic (Dolev-Yao) protocol models idealize crypto
Perfect black-boxes that cannot be opened without relevant key

We model agile crypto primitives parameterized by algorithm
Given a strong algorithm, the primitive behaves ideally
Given a weak algorithm, the primitive completely breaks

e.g. a weak Diffie-Hellman group behaves like a trivial 1-element
group

fun d h i d e a l ( e lement , b i t s t r i n g ) : e l e m e n t .
equat ion f o r a l l x : b i t s t r i n g , y : b i t s t r i n g ;

d h i d e a l ( d h i d e a l (G, x ) , y ) = d h i d e a l ( d h i d e a l (G, y ) , x ) .

fun dh exp ( group , e lement , b i t s t r i n g ) : e l e m e n t
reduc f o r a l l g : group , e : e lement , x : b i t s t r i n g ;

dh exp (WeakDH, e , x ) = BadElement
othe rw i s e f o r a l l g : group , e : e lement , x : b i t s t r i n g ;

dh exp ( StrongDH , BadElement , x ) = BadElement
othe rw i s e f o r a l l g : group , e : e lement , x : b i t s t r i n g ;

dh exp ( StrongDH , e , x ) = d h i d e a l ( e , x ) .
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Modeling weak crypto in ProVerif

Classic symbolic (Dolev-Yao) protocol models idealize crypto
Perfect black-boxes that cannot be opened without relevant key

We model agile crypto primitives parameterized by algorithm
Given a strong algorithm, the primitive behaves ideally
Given a weak algorithm, the primitive completely breaks
e.g. a weak Diffie-Hellman group behaves like a trivial 1-element
group
Similarly, we model strong and weak authenticated encryption, hash
functions, MACs, RSA encryption and signatures.

Our model is overly conservative, it may not indicate real exploits
Our goal is to verify TLS 1.3 against future attacks on legacy crypto
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Modeling TLS 1.3 in ProVerif

TLS 1.3 1-RTT handshake

12 messages in 3 flights,
16 derived keys,
then data exchange

+ PSK-based 0-RTT
+ TLS 1.2

Agile Crypto: ∼400 lines

TLS models: ∼500 lines

Modeling is easy,
verification takes effort

Client C Server S

Long-term Keys: (skC , pkC ) Long-term Keys: (skS , pkS)

ClientHello(nC , offerC [(G , g x),G ′])

RetryRequest(G ′)

Generates x ′ and computes:
es = kdf0

Generates y and computes:
es = kdf0

ClientHello(nC , offer ′C [G ′, g x ′ ])

Chooses parameters:
modeS = (TLS1.3, DHE(G ′),H(), enc())

log 1 log 1

ServerHello(nS ,modeS [G ′, g y ])

Computes:

hs = kdfhs(es, g x ′y )
ms, khc , k

h
s , k

m
c , kms = kdfms(hs, log 1)

Computes:

hs = kdfhs(es, g x ′y )
ms, khc , k

h
s , k

m
c , kms = kdfms(hs, log 1)

enck
h
s (Extensions(. . .))

enck
h
s (CertRequest(. . .))

log 2 log 2
enck

h
s (Certificate(pkS))

log 3 log 3
enck

h
s (CertVerify(signskS (H(log 2))))

log 4 log 4
enck

h
s (Finished(mack

m
s (H(log 3))))

Computes:
kc , ks , ems = kdfk(ms, log 4)

Computes:
kc , ks , ems = kdfk(ms, log 4)

log 5 log 5
enck

h
c (Certificate(pkC ))

log 6 log 6
enck

h
c (CertVerify(signskC (H(log 5))))

log 7 log 7
enck

h
c (Finished(mack

m
c (H(log 6))))

Computes:
psk ′ = kdfpsk(ms, log 7)

cid = ems or psk ′ or H(log 7)

Computes:
psk ′ = kdfpsk(ms, log 7)

cid = ems or psk ′ or H(log 7)

New client session:
C = C ] cid 7→ (offerC ,modeS ,

pkC , pkS ,
kc , ks , ems, psk ′)

New server session:
S = S ] cid 7→ (offerC ,modeS ,

pkC , pkS ,
kc , ks , ems, psk ′)

enckc (Data(m1))

encks (Data(m2))

Application Data Stream:

C
cid←→ S : m1,m2, . . .

Application Data Stream:

C
cid←→ S : m1,m2, . . .

Key Derivation Functions:

HKDF-Extract(k , s) = HMAC-Hk(s)

hkdf-expand-label1(s, l , h) =

HMAC-Hs(lenH()‖“TLS 1.3, ”‖l‖h‖0x01)

Derive-Secret(s, l ,m) =

hkdf-expand-label1(s, l ,H(m))

1-RTT Key Schedule:

kdf0 = HKDF-Extract(0lenH() , 0lenH())

kdfhs(es, e) = HKDF-Extract(es, e)

kdfms(hs, log 1) = ms, khc , k
h
s , k

m
c , kms where

ms = HKDF-Extract(hs, 0lenH())

htsc = Derive-Secret(hs, htsc , log 1)

htss = Derive-Secret(hs, htss , log 1)

khc = hkdf-expand-label(htsc , key, “”)

kmc = hkdf-expand-label(htsc , finished, “”)

khs = hkdf-expand-label(htss , key, “”)

kms = hkdf-expand-label(htss , finished, “”)

kdfk(ms, log 4) = kc , ks , ems where

atsc = Derive-Secret(ms, atsc , log 4)

atss = Derive-Secret(ms, atss , log 4)

ems = Derive-Secret(ms, ems, log 4)

kc = hkdf-expand-label(atsc , key, “”)

ks = hkdf-expand-label(atss , key, “”)

kdfpsk(ms, log 7) = psk ′ where

psk ′ = Derive-Secret(ms, rms, log 7)

PSK-based Key Schedule:

kdfes(psk) = es, kb where

es = HKDF-Extract(0lenH() , psk)

kb = Derive-Secret(es, pbk, “”)

kdf0RTT (es, log 1) = kc where

etsc = Derive-Secret(es, etsc , log 1)

kc = hkdf-expand-label(etsc , key, “”)
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Writing and verifying security goals

We state security queries for data sent between honest users

Secrecy: messages between honest peers are unknown to an adversary
Authenticity: messages between honest peers cannot be tampered
Replay prevention: messages between honest peers cannot be replayed
Forward secrecy: secrecy holds even if the peers’ long-term keys are
leaked after the session is complete

Secrecy query for msg(conn, S) sent from anonymous C to server S

query attacker(msg(conn,S)) =⇒ false
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Refining security queries

QUERY: is msg(conn,S) secret?

query attacker(msg(conn,S)) =⇒ false

FALSE: ProVerif finds a counterexample if S ’s private key is
compromised.
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Refining security queries

QUERY: is msg(conn,S) secret
as long as S is uncompromised?

query attacker(msg(conn,S)) =⇒
event(WeakOrCompromisedKey(S))

FALSE: ProVerif finds a counterexample if the AE algorithm is weak.
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Refining security queries

QUERY: Strongest secrecy query that can be proved in our model

query attacker(msg(conn, S)) =⇒
event(WeakOrCompromisedKey(S)) ∨
event(ServerChoosesAE(conn,S ,WeakAE )) ∨
event(ServerChoosesKEX(conn,S ,WeakDH)) ∨
event(ServerChoosesKEX(conn′,S ,WeakRSADecryption)) ∨
event(ServerChoosesHash(conn′, S ,WeakHash))

TRUE: ProVerif finds no counterexample
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Conclusion: Downgrade security for TLS 1.2 + TLS 1.3

Messages on a TLS 1.3 connection between honest peers are secret:
1 if the connection does not use a weak AE algorithm,
2 the connection does not use a weak DH group,
3 the server never uses a weak hash algorithm for signing, and
4 the server never participates in a TLS 1.2 RSA key exchange.

Analysis confirms preconditions for downgrade resilience in TLS 1.3

identifies weak algorithms in TLS 1.2 that can harm TLS 1.3 security
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Mechanized computational proof

Mechanized verification of TLS 1.3 Draft-18 in the computational
model.

+ Handshake with PSK and/or DHE.

+ Handshake with and without client authentication.

+ 0-RTT and 0.5-RTT data, key updates.

- No post-handshake authentication.

- No version or ciphersuite negotiation: only strong algorithms.

- For PSK-DHE, we do not prove forward secrecy wrt. the
compromise of PSK.

We prove security properties of the initial handshake, the handshake
with pre-shared key, and the record protocol using CryptoVerif.

We compose these pieces manually.
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CryptoVerif, http://cryptoverif.inria.fr/

CryptoVerif is a semi-automatic prover that:

works in the computational model.

generates proofs by sequences of games.

proves secrecy and correspondence properties.

provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, . . .

works for N sessions (polynomial in the security parameter), with an
active adversary.

gives a bound on the probability of an attack (exact security).
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Proofs by sequences of games

CryptoVerif produces proofs by sequences of games, like those of
cryptographers [Shoup, Bellare&Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious
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Input and output of the tool

1 Prepare the input file containing

the specification of the protocol to study (initial game),
the security assumptions on the cryptographic primitives,
the security properties to prove.

2 Run CryptoVerif

Automatic proof strategy or manual guidance.

3 CryptoVerif outputs

the sequence of games that leads to the proof,
a succinct explanation of the transformations performed between
games,
an upper bound of the probability of success of an attack.
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Structure of the proof

1 Computational assumptions

2 Lemmas on primitives
3 Protocol pieces

Handshake without pre-shared key
Handshake with pre-shared key (PSK and PSK-DHE)
Record protocol

4 Compose the pieces together
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Structure of the proof: final composition

Handshake without pre-shared
key

Handshake with pre-shared key

Record protocol

atsc atss psk ′

atsc atss
etsc

psk ′

updated ts
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Key schedule (Draft-18, excerpt)

0

HKDF-Extract

Early Secret es

HKDF-Extract

Handshake Secret

PSK

(EC)DHE

Derive-Secret(., “external psk binder key” |
“resumption psk binder key”, “”)

= binder key

Derive-Secret(., “client early traffic secret”,
ClientHello)

= client early traffic secret (etsc)
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Assumptions (1)

Diffie-Hellman:
gap Diffie-Hellman (GDH)

needed in particular for 0.5-RTT

Diffie-Hellman group of prime order
Diffie-Hellman group elements different from 0lenH()

avoids confusion between handshakes with and without
Diffie-Hellman exchange.

Diffie-Hellman group elements different from
lenH()‖“TLS 1.3, ”‖l‖h‖0x01.

avoids collision between HKDF-Extract(es, e) and
Derive-Secret(es, pbk, “”) or Derive-Secret(es, etsc , log 1).
independently discovered and discussed on the TLS mailing list.
change in Draft-19 makes this assumption unnecessary:
add a Derive-Secret stage before HKDF-Extract.
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Assumptions (2)

Signatures: sign is UF-CMA.

Hash functions: H is collision-resistant.

HMAC:

x 7→ HMAC-H0
lenH()

(x) and x 7→ HMAC-Hkdf0 (x) are independent
random oracles.
HMAC-H is a PRF, for keys different from 0lenH() and kdf0.

Authenticated Encryption: IND-CPA and INT-CTXT provided the
same nonce is never used twice with the same key.
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Lemmas on primitives: MAC and signatures

mackH(m) = mack(H(m)) is an SUF-CMA MAC.

signsk
H (m) = signsk(H(m)) is an UF-CMA signature.
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Lemmas on primitives: key schedule

Lemma

When es is a fresh random value,

e 7→ HKDF-Extract(es, e) and

log 1 7→ Derive-Secret(es, etsc , log 1)
are indistinguishable from independent random functions, and

kb = Derive-Secret(es, pbk, “”) and

HKDF-Extract(es, 0lenH())
are indistinguishable from independent fresh random values
independent from these random functions.

Proved using CryptoVerif.

Similar lemmas for other parts of the key schedule.

Used as assumption in the proof of the protocol.
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Handshake without pre-shared key: model

Model a honest client and a honest server.

May interact with dishonest clients and servers included in the
adversary.

Ignore negotiation (RetryRequest).

Give the handshake keys to adversary:

The adversary can encrypt and decrypt messages.
The security proof does not rely on that.

Server always authenticated.

With and without client authentication.

The honest client and server may be dynamically compromised.
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Handshake without pre-shared key: honest sessions

The client is in a honest session if

the server public key is the one of the honest server, and
the honest server is not compromised, or it is compromised and the
messages received by the client have been sent by the honest server.

The server is in a honest session if
client authenticated:

the client public key is the one of honest client, and
the honest client is not compromised, or it is compromised and the
messages received by the server have been sent by the honest client.

client not authenticated: the Diffie-Hellman share received by the
server has been sent by the honest client.
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Handshake without pre-shared key: security (1)

Key authentication:
If the honest client terminates a honest session, then the honest
server has accepted a session with that client, and they agree on:

keys atsc , atss , and ems,
all messages until the server Finished message.

If the honest server terminates a honest session, then the honest
client has accepted a session with that server, and they agree on the
keys and on all messages.

Replay prevention: the previous properties are injective.

Key secrecy: the keys

atsc , ems, psk ′ client side, when the client terminates a honest
session;
atss server side, when the server sends its Finished message and the
received Diffie-Hellman share comes from the client (for 0.5-RTT)

are indistinguishable from independent fresh random values.
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Handshake without pre-shared key: security (2)

Same key:

If the honest client terminates a honest session and the honest server
has accepted a session with the same messages, then they have the
same key.
If the honest server terminates a honest session and the honest client
has accepted a session with the same messages, then they have the
same key.

Unique channel identifier:

psk ′ or H(log 7):
If a client session and a server session have the same psk ′ or H(log 7),
then all their parameters are equal (collision-resistance).
ems:
If a client session and a server session have the same ems,
then they have the same log 4 (collision-resistance),
so all their parameters are equal (CryptoVerif).
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Handshake without pre-shared key: guidance

Signature under skS .

Introduce tests to distinguish cases, depending on
whether the Diffie-Hellman share received by the server is a share g x′

from the client,
and whether the Diffie-Hellman share received by the client is the
share g y generated by the server upon receipt of g x′

.

Random oracle assumption on x 7→ HMAC-Hkdf0(x).

Replace variables that contain g x ′y with their values to make
equality tests m = g x ′y appear.

Gap Diffie-Hellman assumption.

⇒ the handshake secret hs is a fresh random value.

Lemmas on key schedule ⇒ other keys are fresh random values.

MAC.

Signature under skC .
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Handshake with pre-shared key: model

Includes handshakes with and without Diffie-Hellman exchange.

Includes 0-RTT.

Ignore the ticket enckt (psk); consider a honest client and a honest
server that share the PSK.

Give the handshake keys to adversary (as before).

Certificates optional, since the client and server are already
authenticated by the PSK.
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Handshake with pre-shared key: security (1)

Same properties as for the initial handshake, but

No compromise of PSK.

Limitation of CryptoVerif: cannot prove forward secrecy wrt. to the
compromise of PSK for PSK-DHE.

Weaker properties for 0-RTT:
Key authentication: No authentication for etsc :

several binders, and only one of them is checked;
the adversary can alter the others, yielding a different etsc server-side.

Replay prevention: No replay protection for etsc .
Secrecy of keys: The keys etsc server-side are not independent of
each other, due to the replay.
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Handshake with pre-shared key: security (2)

For 0-RTT, we show:

Client-side: The keys etsc are indistinguishable from independent
random values.

Server-side:

If the received ClientHello message has been sent by the client,
then this session matches a session of the client with same key etsc .
Otherwise,

If the ClientHello message has been received before, then the key etsc
computed by the server is the same as in the previous session with
the same ClientHello message.
Otherwise, the key etsc computed by the server is indistinguishable
from a fresh random value, independent from other keys.
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Record protocol

The client and the server share a fresh random traffic secret.

Key secrecy: The updated traffic secret is indistinguishable from a
fresh random value.

Message secrecy: When the adversary provides two sets of plaintexts
mi and m′

i of the same padded length, it is unable to determine
which set is encrypted, even when the updated traffic secret is
leaked.

Message Authentication: If a message m is decrypted by the receiver
with a counter c , then the message m has been encrypted and sent
by an honest sender with the same counter c.

Replay Prevention: The authentication property above is injective.
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Composition

Handshake without pre-shared
key

Handshake with pre-shared key

Record protocol

atsc atss psk ′

atsc atss
etsc

psk ′

updated ts
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Composition: main theorem (informal)

System S : key exchange; A and B obtain a key such that:

Key secrecy: The keys obtained by A are indistinguishable from
independent random values.
One-way injective authentication: For each session of B that obtains
a key k after sending/receiving m̃sg , there is a distinct session of A
that obtains the key k after sending/receiving m̃sg .
Same key: If B obtains a key k after sending/receiving m̃sg and A
obtains a key k ′ after sending/receiving m̃sg , then k = k ′.

System S ′ assumes a fresh random key shared by A′ and B ′.

The composed system Scomposed runs the key exchange followed by
A′ with the key obtained by A and B ′ with the key obtained by B.

The security properties of S and S ′ carry over to Scomposed .
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Composition (in progress)

The previous theorem allows to perform most compositions.

More tricky composition theorems for 0-RTT,
because the properties are weaker.

A simpler composition theorem for key update.
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Mechanized computational proof: conclusion

Mechanized verification of TLS 1.3 Draft-18 in the computational
model.

+ Handshake with PSK and/or DHE.

+ Handshake with and without client authentication.

+ 0-RTT and 0.5-RTT data, key updates.

- No post-handshake authentication.

- No version or ciphersuite negotiation: only strong algorithms.

- For PSK-DHE, we do not prove forward secrecy wrt. the
compromise of PSK.

CryptoVerif proves properties of the handshake with (resp. without)
pre-shared-key and of the record protocol.

We infer properties of the whole system by manual composition.

Modular approach essential to be able to handle such a complex
protocol.

TLS 1.3 Draft-18 is well-designed to allow such a proof.
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RefRLS: a reference implementation

Supports TLS 1.0-1.3 and interoperates with other libraries

Supports Draft 20 1-RTT with (EC)DHE and/or PSK (No 0-RTT)
Supports common TLS 1.2 modes (RSA, DHE with AES-CBC,
AES-GCM)

Distributed as a JavaScript library for ease of deployment

Can be used within Node.js and Electron apps
Meant for early adopters and interop testing, not for production code!

We extract core protocol functions from the implementation

Ensures that we did not miss some RFC/implementation detais
Other parts of the implementation are not verified (unlike miTLS)

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 43 / 45



TLS 1.3 ProVerif CryptoVerif Implementation Conclusion

RefTLS architecture

Mostly written in Flow

Statically-typed JavaScript

Identify, isolate protocol core

Protocol state machine

Includes all crypto processing:
encryption, signing, DHE, . . .

Core written in ProScript

Typed JavaScript subset that
can be compiled to ProVerif
[Kobeissi et al. EuroS&P’17]

Application
(JavaScript)

RefTLS API/Processes	
(Flow)

RefTLS Protocol	Core
(ProtoFlow)

TLS	Message	Formats
(Flow)

Cryptographic	Library
(OpenSSL	C/asm)

Runtime	Framework
(Electron	JS/C++)

Untrusted
Code

Trusted
Libraries

VERIFY

Threat
Model

Security
Goals

Success
Symbolic Proof

Failure
potential
attack
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Results and limitations

We present a comprehensize analysis of TLS 1.3 draft 18

Symbolic analysis, cryptographic proofs, a reference implementation

Many limitations, missing features, unverified components

Symbolic model ignores resumption, post-handshake authentication
Crypto proof ignores negotiation, legacy versions, post-handshake
authentication
Unverified protocol code: message parsing, crypto library, Node

http://github.com/inria-prosecco/reftls
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