Verified Models and Reference Implementations
for the TLS 1.3 Standard Candidate

Bruno Blanchet

INRIA Paris
Bruno.Blanchet@inria.fr

Joint work with Karthikeyan Bhargavan and Nadim Kobeissi

June 2017

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 1/45

TLS 1.3

Transport Layer Security (TLS) 1.3

@ Next version of the most popular secure channel protocol.

o Completely redesigned from TLS 1.2
o After 20 drafts, on the verge of standardization

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 2 /45

TLS 1.3

Transport Layer Security (TLS) 1.3

@ Next version of the most popular secure channel protocol.

o Completely redesigned from TLS 1.2
o After 20 drafts, on the verge of standardization

@ Why did we need a new protocol?
e Security: remove broken legacy crypto constructions

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 2 /45

TLS 1.3

Attacks against TLS 1.2

RC4 Keystream biases [Mar'13]
Lucky13 MAC-Encode-Encrypt CBC [Mar'13]
POODLE SSLv3 MAC-Encode-Encrypt [Dec'14]

FREAK Export-grade 512-bit RSA [Mar'15]
LOGJAM Export-grade 512-bit DH [May'15]
SLOTH RSA-MD?5 signatures [Jan'16]
DROWN SSLv2 PSA-PKCS#1v1.5 Enc [Mar'16]
SWEET32 3DES Encryption [Oct'16]

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 3/45

TLS 1.3

Transport Layer Security (TLS) 1.3

@ Next version of the most popular secure channel protocol.
o Completely redesigned from TLS 1.2
o After 20 drafts, on the verge of standardization

@ Why did we need a new protocol?

e Security: remove broken legacy crypto constructions
e Efficiency: reduce handshake roundtrip latency

@ O0-RTT when the client and server have a pre-shared key
e 0.5-RTT

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 4 /45

TLS 1.3

Transport Layer Security (TLS) 1.3

@ Next version of the most popular secure channel protocol.

o Completely redesigned from TLS 1.2
o After 20 drafts, on the verge of standardization

@ Why did we need a new protocol?

e Security: remove broken legacy crypto constructions
e Efficiency: reduce handshake roundtrip latency

@ O0-RTT when the client and server have a pre-shared key
e 0.5-RTT

e These are potentially contradictory goals
o Needs extensive security analysis before deployment!
e The IETF called for academics to formally analyze the protocol drafts.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 4 /45

TLS 1.3

Analyzing TLS 1.3

@ Many published analyses for intermediate TLS 1.3 drafts
o Cryptography proofs (of drafts 5,9,10)
[Dowling et al. CCS'15, Krawczyk et al. EuroS&P'16, Li et al. S&P'16]
e Symbolic protocol analysis (of draft 10)
[Cremers et al. S&P'16]
o Verified implementation (of draft 18 record protocol)
[Bhargavan et al. S&P’'17]
o Symbolic and computational proofs (of draft 18)
[Bhargavan et al. S&P’17; this talk]
@ Are we done? s it secure?
o If we deploy TLS 1.3, will it expose new attacks?

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 5/ 45

TLS 1.3

TLS 1.2 and its proofs: a checkered history

Historically, published proofs of TLS missed many attacks
Large gaps between simplified models and the deployed protocol

@ Proofs ignored “ugly” implementation details

e e.g. AES-CBC padding, RSA-PKCS+#1v1.5 padding
@ Proofs relied on strong crypto assumptions on primitives

e e.g. collision resistant hash functions, strong Diffie-Hellman groups
© Proofs ignored composition with obsolete/unpopular modes

e e.g. SSLv2, EXPORT ciphers, renegotiation

How do we ensure that TLS 1.3 proofs do not fall into these traps?

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 6 /45

TLS 1.3

Our approach

@ Use automated verification tools to handle protocol complexity
e Easy to extend as protocol evolves, or as we model new features
@ Symbolically analyze protocol against known attack vectors

o Find or prove the absence of downgrade attacks to TLS 1.2 (using
ProVerif)

@ Build a mechanically-checked cryptographic proof of TLS 1.3

o Explore the crypto assumptions needed by TLS 1.3 (using
CryptoVerif)

@ Synchronize verified models with RFC and its implementations

e Extract ProVerif model from an interoperable implementation
(RefTLS)

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 7 /45

TLS 1.3

Our vision: one model, three tasks

Potential
attack

Protocol fix 1915773 Model

?

Symbolic
proof

Cryptographic
proof

Y

Reference im-
plementation

Other TLS
libraries

Interop testing

(Inspired by: Verified interoperable implementations of security protocols, TOPLAS 2008.)

Bruno Blanchet (INRIA)

TLS 1.3 Verification

June 2017

8/ 45

TLS 1.3

Our current toolchain

Protocol fix | TLS 1.3 Core

" | protocol code

<

~ -
~ -

v.o

_-" Model Y
~ < _extraction .~
< > .
_ manual edits

~
~

Y

TLS 1.3
Symbolic model

TLS 1.3
Crypto model

!

Potential
attack

\

Reference im-
plementation

Other TLS
libraries

Symbolic
proof

Cryptographic
proof

Bruno Blanchet (INRIA)

TLS 1.3 Verification

Interop testing

June 2017

9/ 45

ProVerif

Symbolic analysis to find downgrade (and other) attacks

Recent attacks on legacy crypto in TLS:

RC4 Keystream biases [Mar'13]
Luckyl3 ~ MAC-Encode-Encrypt CBC [Mar'13]
POODLE SSLv3 MAC-Encode-Encrypt [Dec'14]

FREAK Export-grade 512-bit RSA [Mar'15]
LOGJAM Export-grade 512-bit DH [May'15]
SLOTH RSA-MD5 signatures [Jan'16]

DROWN SSLv2 PSA-PKCS#1v1.5 Enc [Mar'16]

Legacy crypto remains in TLS libraries for backwards compatibility.
Is TLS 1.3 secure, if it is deployed alongside older versions of TLS?

@ Can a man-in-the-middle downgrade TLS 1.3 peers to use legacy
crypto?

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017

10 / 45

ProVerif

Modeling weak crypto in ProVerif

@ Classic symbolic (Dolev-Yao) protocol models idealize crypto

o Perfect black-boxes that cannot be opened without relevant key
@ We model agile crypto primitives parameterized by algorithm

e Given a strong algorithm, the primitive behaves ideally

e Given a weak algorithm, the primitive completely breaks

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 11 / 45

ProVerif

Modeling weak crypto in ProVerif

@ Classic symbolic (Dolev-Yao) protocol models idealize crypto
o Perfect black-boxes that cannot be opened without relevant key
@ We model agile crypto primitives parameterized by algorithm
e Given a strong algorithm, the primitive behaves ideally
e Given a weak algorithm, the primitive completely breaks
e e.g. a weak Diffie-Hellman group behaves like a trivial 1-element
group

fun dh_ideal(element, bitstring):element.
equation forall x:bitstring , y:bitstring;
dh_ideal (dh_ideal (G,x),y) = dh_ideal(dh_ideal (G,y),x).

fun dh_exp(group,element, bitstring):element

reduc forall g:group, e:element, x:bitstring;
dh_exp (WeakDH, e, x) = BadElement

otherwise forall g:group, e:element, x:bitstring;
dh_exp (StrongDH , BadElement ,x) = BadElement

otherwise forall g:group, e:element, x:bitstring;
dh_exp (StrongDH ,e,x) = dh_ideal(e,x).

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017

11 / 45

ProVerif

Modeling weak crypto in ProVerif

@ Classic symbolic (Dolev-Yao) protocol models idealize crypto

o Perfect black-boxes that cannot be opened without relevant key
@ We model agile crypto primitives parameterized by algorithm

e Given a strong algorithm, the primitive behaves ideally

e Given a weak algorithm, the primitive completely breaks

e e.g. a weak Diffie-Hellman group behaves like a trivial 1-element

group
e Similarly, we model strong and weak authenticated encryption, hash

functions, MACs, RSA encryption and signatures.
@ Our model is overly conservative, it may not indicate real exploits
e Our goal is to verify TLS 1.3 against future attacks on legacy crypto

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 12 / 45

ProVerif

Modeling TLS 1.3 in ProVerif

g Rers ke g Keys Gtsopi)]

Clientkello(nc, offerc[(G.). G'])

TLS 1.3 1-RTT handshake

@ 12 messages in 3 flights,
16 derived keys,
then data exchange
+ PSK-based 0-RTT Lo o

+TLS 1.2 e

Generates ' and computes:
o= kdfp

Generates y and computes:

ClientHello(nc, offer[G',)

Chooses parameters:
modes = (TLS1..3, DHE(G'), H(), enc()

s ServerHilo(ns, modes(G',g")) I

Computes:
s = s (es.6™)
s, kb kP K. K = s, o)

s = k(e 877)
ms, kb, kP, ki = kdf ms(hs, log)

Computes: ‘

enct (Extensions(...)

- logz
- logs
—

nputes:

o Computes
ke . ems = kel (ms. logi)

Kok, ems = kafy(ms. log,)

] enct (certaticate(pkc)) o
e [—enc” Certverity (g (Rllogs)))__| o
i)

Finished(mac” (H{logs T

~500 lines log - - | —ene Cimishod(mac (lioge) [jog;

Computes Computes:

o Agile Crypto: ~400 lines
@ TLS models:
sk’ = kdfpy(ms, og7) sk’ = kdfp (s, log)
cid = ems or psk or H(log;) cid = ems or psk’ or H(log7)

Modeling is easy,
verification takes effort

New server session:

€ =Ciscid v (offerc, modes. S = Stcid > (offerc, modes.

€ pks pke, pks
K.k ems, psk') ke ks, ems. psk')

enc(Data(mz)

Application Data Stream. Application Data Stream:
C 5 €5y m,

TLS 1.3

Bruno Blanchet (INRIA) ification

Key Derivation Functions:
HKDF-Extract(k, s) = HMAC-HX(s)
hkdf-expand-labely (s, /. h) =

HMAC-HS (Jenyy)|| “TLS 1.3," /]| h]|0x01)
Derive-Secret(s, I, m) =

hkdf-expand-labely (s, I, H(m))
1-RTT Key Schedule:
kdfo = HKDF-Extract(0'™0, om0
kdfps(es. €) = HKDF-Extract(es, €)
kdfms(hs. logy) = ms. k!, k!, kI, kI" where

ms = HKDF-Extract(hs, 0"*™0)

hts. = Derive-Secret(hs, hts, log)

hts; = Derive-Secret(hs, hts;, log,)

Kl = hkdf-expand-label(htsc., key, ")

kI = hkdf-expand-label(hts.. finished, ")

k! = hkdf-expand-label(hts,. key, ")

K" = hkdf-expand-label(hts,. finished, ")
kdfy(ms, log,) = ke, ks, ems where

ats. = Derive-Secret(ms, atsc, log,)

atss = Derive-Secret(ms, atss, log,)
ems = Derive-Secret(ms, ems, log,)
ke = hkdf-expand-label(atsc, key, ')

ks = hkdf-expand-label(atss, key.

kdf psi(ms. log7) = psk' where

psk’ = Derive-Secret(ms, rms, log7)
PSK-based Key Schedule:
kdfes(psk) = es, k® where

es = HKDF-Extract(0"™0 psk)

kP = Derive-Secret(es, pbk, ")
kdforrT(es. logy) = ke where

ets. = Derive-Secret(es, ets., log)

ke = hkdf-expand-label(etsc.key, ")

Ju

2017 13 / 45

ProVerif

Writing and verifying security goals

@ We state security queries for data sent between honest users

e Secrecy: messages between honest peers are unknown to an adversary

e Authenticity: messages between honest peers cannot be tampered

e Replay prevention: messages between honest peers cannot be replayed

e Forward secrecy: secrecy holds even if the peers' long-term keys are
leaked after the session is complete

@ Secrecy query for msg(conn, S) sent from anonymous C to server S

query attacker(msg(conn, S)) = false

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 14 / 45

ProVerif

Refining security queries

e QUERY: is msg(conn, S) secret?
query attacker(msg(conn, S)) = false

@ FALSE: ProVerif finds a counterexample if S's private key is
compromised.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 15 / 45

ProVerif

Refining security queries

e QUERY: is msg(conn, S) secret
as long as S is uncompromised?

query attacker(msg(conn, S)) =
event(WeakOrCompromisedKey(S))

@ FALSE: ProVerif finds a counterexample if the AE algorithm is weak.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 16 / 45

ProVerif

Refining security queries

@ QUERY: Strongest secrecy query that can be proved in our model

query attacker(msg(conn, S)) =
event(WeakOrCompromisedKey(S)) V
event(ServerChoosesAE(conn, S, WeakAE)) v
event(ServerChoosesKEX(conn, S, WeakDH)) v
event(ServerChoosesKEX(conn’, S, WeakRSADecryption)) V

(

event(ServerChoosesHash(conn’, S, WeakHash))

@ TRUE: ProVerif finds no counterexample

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 17 / 45

ProVerif

Conclusion: Downgrade security for TLS 1.2 + TLS 1.3

@ Messages on a TLS 1.3 connection between honest peers are secret:
@ if the connection does not use a weak AE algorithm,
@ the connection does not use a weak DH group,
© the server never uses a weak hash algorithm for signing, and
© the server never participates in a TLS 1.2 RSA key exchange.
@ Analysis confirms preconditions for downgrade resilience in TLS 1.3
o identifies weak algorithms in TLS 1.2 that can harm TLS 1.3 security

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 18 / 45

CryptoVerif

Mechanized computational proof

@ Mechanized verification of TLS 1.3 Draft-18 in the computational
model.

+ Handshake with PSK and/or DHE.

+ Handshake with and without client authentication.

+ O-RTT and 0.5-RTT data, key updates.

— No post-handshake authentication.

— No version or ciphersuite negotiation: only strong algorithms.
— For PSK-DHE, we do not prove forward secrecy wrt. the
compromise of PSK.

@ We prove security properties of the initial handshake, the handshake
with pre-shared key, and the record protocol using CryptoVerif.

@ We compose these pieces manually.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 19 / 45

CryptoVerif

CryptoVerif, http://cryptoverif.inria.fr/

CryptoVerif is a semi-automatic prover that:
@ works in the computational model.
@ generates proofs by sequences of games.
@ proves secrecy and correspondence properties.

@ provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, ...

@ works for N sessions (polynomial in the security parameter), with an
active adversary.

@ gives a bound on the probability of an attack (exact security).

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 20 / 45

CryptoVerif

Proofs by sequences of games

CryptoVerif produces proofs by sequences of games, like those of
cryptographers [Shoup, Bellare&Rogaway]:
@ The first game is the real protocol.
@ One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.
@ The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

— — —
Protocol p1 p2 e Pn Property
to prove |negligible negligible negligible obvious

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 21/ 45

CryptoVerif

Input and output of the tool

@ Prepare the input file containing
o the specification of the protocol to study (initial game),
e the security assumptions on the cryptographic primitives,
e the security properties to prove.
@ Run CryptoVerif
e Automatic proof strategy or manual guidance.
© CryptoVerif outputs
e the sequence of games that leads to the proof,
e a succinct explanation of the transformations performed between
games,
e an upper bound of the probability of success of an attack.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 22 / 45

CryptoVerif

Structure of the proof

@ Computational assumptions

@ Lemmas on primitives
© Protocol pieces

e Handshake without pre-shared key
o Handshake with pre-shared key (PSK and PSK-DHE)
e Record protocol

@ Compose the pieces together

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 23 / 45

CryptoVerif

Structure of the proof: final composition

Handshake without pre-shared
key

Record protocol

updated ts

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 24 / 45

CryptoVerif

Key schedule (Draft-18, excerpt)

0
¥

PSK —| HKDF-Extract |
\]

Early Secret es

— Derive-Secret(., “external psk binder key" |
“resumption psk binder key", ")
= binder _key

— Derive-Secret(., “client early traffic secret”,
ClientHello)
= client_early _traffic_secret (ets.)

(EC)DHE —» HKDF-Extract |
¥

Handshake Secret

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 25 / 45

CryptoVerif

Assumptions (1)

o Diffie-Hellman:
o gap Diffie-Hellman (GDH)
e needed in particular for 0.5-RTT
o Diffie-Hellman group of prime order
o Diffie-Hellman group elements different from 0%
@ avoids confusion between handshakes with and without
Diffie-Hellman exchange.
o Diffie-Hellman group elements different from
lenyy|| “TLS 1.3." |[/]|]|0x01.
@ avoids collision between HKDF-Extract(es, e) and
Derive-Secret(es, pbk, ") or Derive-Secret(es, etsc, log;).
e independently discovered and discussed on the TLS mailing list.
@ change in Draft-19 makes this assumption unnecessary:
add a Derive-Secret stage before HKDF-Extract.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 26 / 45

CryptoVerif

Assumptions (2)

@ Signatures: sign is UF-CMA.
@ Hash functions: H is collision-resistant.

e HMAC:

o x 5 HMAC-H"™ (x) and x —s HMAC-H"¥"(x) are independent
random oracles.
o HMAC-H is a PRF, for keys different from 00 and kdfy.

@ Authenticated Encryption: IND-CPA and INT-CTXT provided the
same nonce is never used twice with the same key.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 27 / 45

CryptoVerif

Lemmas on primitives: MAC and signatures

o macfi(m) = mack(H(m)) is an SUF-CMA MAC.
o signik(m) = sign(H(m)) is an UF-CMA signature.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 28 / 45

CryptoVerif

Lemmas on primitives: key schedule

Lemma

When es is a fresh random value,

o e — HKDF-Extract(es, e) and
@ log; — Derive-Secret(es, ets, logy)
are indistinguishable from independent random functions, and
o kP = Derive-Secret(es, pbk, ") and
o HKDF-Extract(es, 0¢"™0)

are indistinguishable from independent fresh random values
independent from these random functions.

@ Proved using CryptoVerif.
@ Similar lemmas for other parts of the key schedule.

@ Used as assumption in the proof of the protocol.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 29 / 45

CryptoVerif

Handshake without pre-shared key: model

@ Model a honest client and a honest server.

@ May interact with dishonest clients and servers included in the
adversary.

@ Ignore negotiation (RetryRequest).

@ Give the handshake keys to adversary:

e The adversary can encrypt and decrypt messages.
e The security proof does not rely on that.

@ Server always authenticated.
@ With and without client authentication.

@ The honest client and server may be dynamically compromised.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 30 / 45

CryptoVerif

Handshake without pre-shared key: honest sessions

@ The client is in a honest session if
e the server public key is the one of the honest server, and
e the honest server is not compromised, or it is compromised and the
messages received by the client have been sent by the honest server.
@ The server is in a honest session if
e client authenticated:
o the client public key is the one of honest client, and
@ the honest client is not compromised, or it is compromised and the
messages received by the server have been sent by the honest client.
e client not authenticated: the Diffie-Hellman share received by the
server has been sent by the honest client.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 31/ 45

CryptoVerif

Handshake without pre-shared key: security (1)

@ Key authentication:

o If the honest client terminates a honest session, then the honest

server has accepted a session with that client, and they agree on:
o keys ats., atss, and ems,
o all messages until the server Finished message.

o If the honest server terminates a honest session, then the honest
client has accepted a session with that server, and they agree on the
keys and on all messages.

@ Replay prevention: the previous properties are injective.
@ Key secrecy: the keys

o atsc, ems, psk’ client side, when the client terminates a honest
session;

@ ats, server side, when the server sends its Finished message and the
received Diffie-Hellman share comes from the client (for 0.5-RTT)

are indistinguishable from independent fresh random values.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 32 /45

CryptoVerif

Handshake without pre-shared key: security (2)

@ Same key:

o If the honest client terminates a honest session and the honest server
has accepted a session with the same messages, then they have the
same key.

o If the honest server terminates a honest session and the honest client
has accepted a session with the same messages, then they have the
same key.

@ Unique channel identifier:

o psk’ or H(log7):

If a client session and a server session have the same psk’ or H(log),
then all their parameters are equal (collision-resistance).

e ems:

If a client session and a server session have the same ems,
then they have the same log, (collision-resistance),
so all their parameters are equal (CryptoVerif).

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 33 /45

CryptoVerif

Handshake without pre-shared key: guidance

@ Signature under sks.
@ Introduce tests to distinguish cases, depending on

e whether the Diffie-Hellman share received by the server is a share gx,
from the client,

e and whether the Diffie-Hellman share received by the client is the
share g” generated by the server upon receipt of gX/.

o Random oracle assumption on x — HMAC-Hfo(x).

Replace variables that contain gX'y with their values to make
equality tests m = g¥'¥ appear.

Gap Diffie-Hellman assumption.

= the handshake secret hs is a fresh random value.

Lemmas on key schedule = other keys are fresh random values.
MAC.

@ Signature under sk¢.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 34 / 45

CryptoVerif

Handshake with pre-shared key: model

@ Includes handshakes with and without Diffie-Hellman exchange.
@ Includes O0-RTT.

o Ignore the ticket enc’t(psk); consider a honest client and a honest
server that share the PSK.

@ Give the handshake keys to adversary (as before).

o Certificates optional, since the client and server are already
authenticated by the PSK.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 35/ 45

CryptoVerif

Handshake with pre-shared key: security (1)

Same properties as for the initial handshake, but
@ No compromise of PSK.
e Limitation of CryptoVerif: cannot prove forward secrecy wrt. to the
compromise of PSK for PSK-DHE.
@ Weaker properties for 0-RTT:
e Key authentication: No authentication for ets.:
o several binders, and only one of them is checked;
o the adversary can alter the others, yielding a different ets. server-side.
e Replay prevention: No replay protection for ets..
e Secrecy of keys: The keys ets. server-side are not independent of
each other, due to the replay.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 36 / 45

CryptoVerif

Handshake with pre-shared key: security (2)

For O-RTT, we show:

@ Client-side: The keys ets. are indistinguishable from independent
random values.

@ Server-side:
o If the received ClientHello message has been sent by the client,
then this session matches a session of the client with same key ets..
o Otherwise,

o If the ClientHello message has been received before, then the key ets.
computed by the server is the same as in the previous session with
the same ClientHello message.

o Otherwise, the key ets. computed by the server is indistinguishable
from a fresh random value, independent from other keys.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 37 /45

CryptoVerif

Record protocol

The client and the server share a fresh random traffic secret.

o Key secrecy: The updated traffic secret is indistinguishable from a
fresh random value.

@ Message secrecy: When the adversary provides two sets of plaintexts
m; and m’ of the same padded length, it is unable to determine
which set is encrypted, even when the updated traffic secret is
leaked.

@ Message Authentication: If a message m is decrypted by the receiver
with a counter c, then the message m has been encrypted and sent
by an honest sender with the same counter c.

@ Replay Prevention: The authentication property above is injective.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 38 /45

CryptoVerif

Composition

Handshake without pre-shared
key

Record protocol

updated ts

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 39 / 45

CryptoVerif

Composition: main theorem (informal)

@ System S: key exchange; A and B obtain a key such that:

o Key secrecy: The keys obtained by A are indistinguishable from
independent random values.

e One-way injective authentication: For each session of B that obtains
a key k after sending/receiving msg, there is a distinct session of A
that obtains the key k after sending/receiving msg.

o Same key: If B obtains a key k after sending/receiving msg and A
obtains a key k’ after sending/receiving msg, then k = k'.

@ System S’ assumes a fresh random key shared by A’ and B'.

@ The composed system Scomposed runs the key exchange followed by
A’ with the key obtained by A and B’ with the key obtained by B.

@ The security properties of S and S’ carry over to Scomposed -

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 40 / 45

CryptoVerif

Composition (in progress)

@ The previous theorem allows to perform most compositions.

@ More tricky composition theorems for O-RTT,
because the properties are weaker.

@ A simpler composition theorem for key update.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 41 / 45

CryptoVerif

Mechanized computational proof: conclusion

@ Mechanized verification of TLS 1.3 Draft-18 in the computational
model.

+ Handshake with PSK and/or DHE.

+ Handshake with and without client authentication.

+ O-RTT and 0.5-RTT data, key updates.

— No post-handshake authentication.

— No version or ciphersuite negotiation: only strong algorithms.
— For PSK-DHE, we do not prove forward secrecy wrt. the
compromise of PSK.

e CryptoVerif proves properties of the handshake with (resp. without)
pre-shared-key and of the record protocol.

@ We infer properties of the whole system by manual composition.

@ Modular approach essential to be able to handle such a complex
protocol.

@ TLS 1.3 Draft-18 is well-designed to allow such a proof.

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 42 / 45

Implementation

RefRLS: a reference implementation

@ Supports TLS 1.0-1.3 and interoperates with other libraries
e Supports Draft 20 1-RTT with (EC)DHE and/or PSK (No 0-RTT)
e Supports common TLS 1.2 modes (RSA, DHE with AES-CBC,
AES-GCM)
@ Distributed as a JavaScript library for ease of deployment

e Can be used within Node.js and Electron apps
e Meant for early adopters and interop testing, not for production code!

@ We extract core protocol functions from the implementation

o Ensures that we did not miss some RFC/implementation detais
e Other parts of the implementation are not verified (unlike miTLS)

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 43 / 45

RefTLS architecture

Mostly written in Flow
o Statically-typed JavaScript

Untrusted

Identify, isolate protocol core Code
@ Protocol state machine
@ Includes all crypto processing:
encryption, signing, DHE, ...

Core written in ProScript Trusted
Libraries

@ Typed JavaScript subset that
can be compiled to ProVerif
[Kobeissi et al. EuroS&P’'17]

Bruno Blanchet (INRIA) TLS 1.3 Verification

Implementation

Application
(JavaScript)

RefTLS API/Processes
(Flow)

Threat Securi
Model Goal

RefTLS Protocol Core
(ProtoFlow)

E—— VERIFY

TLS Message Formats
(Flow)

i

Success
Symbolic Proot

Cryptographic Library
(OpensSL C/asm)

Runtime Framework
(Electron JS/C++)

June 2017

ity
Is
Failure
potential
attack

44 / 45

Conclusion

Results and limitations

@ We present a comprehensize analysis of TLS 1.3 draft 18
e Symbolic analysis, cryptographic proofs, a reference implementation
@ Many limitations, missing features, unverified components

e Symbolic model ignores resumption, post-handshake authentication

e Crypto proof ignores negotiation, legacy versions, post-handshake
authentication

e Unverified protocol code: message parsing, crypto library, Node

http://github.com/inria-prosecco/reftls

Bruno Blanchet (INRIA) TLS 1.3 Verification June 2017 45 / 45

http://github.com/inria-prosecco/reftls

	TLS 1.3
	ProVerif
	CryptoVerif
	Implementation
	Conclusion

