centere ETH @ CHAINSECURITY

Securify: Practical Security Analysis of Smart Contracts
https://securify.ch

Dr. Petar Tsankov

Scientific Researcher, ICE center, ETH Zurich

Co-founder and Chief Scientist, ChainSecurity AG
B http://www.ptsankov.com/

@ ptsankov

center@Em http://ice.ethz.ch

Inter-disciplinary and inter-department research center at ETH Zurich

\

Prof. Martin Prof. Laurent Dr. Petar Timon Ahmed
Vechev Vanbever Tsankov Drachsler Gehr El-Hassany

Maria Radiger Samuel Roland Johannes
Apostolaki Birkner Steffan Meier Kapfhammer

Research @ ICE

Safe and interpretable Al Security and privacy

Research @ ICE

Safe and interpretable Al Security and privacy

What is a Smart Contract?

mapping(address => uint) balances;

function withdraw() {
uint amount = balances[msg.sender];
msg.sender.call.value(amount);

balances[msg.sender] = 0O; Transfer ETH to
} the caller

= Small programs that handle cryptocurrencies

= Written in high-level languages (e.g., Solidity, Vyper)
= Executed on the blockchain (e.g. Ethereum)

= Usually no patching after release

What can happen when programs handle billions worth of USD?

Smart Contract Security Bugs in the News

CYBERSECURITY

$32 million worth of digital

-ﬂ currency ether stolen by
- i | . hackers

Breaking News: BUg Discovered In ICON (ICX) Smart Ps worth $32 6 milkon were taken by hackers on
COﬂtraCt - TOken TranSfers Disabled WS GNatLre walet was expioited by hackers

Incicdent on Monday where $7 milion worth of ether

The DAD, the dstributed autonomous

ether, has reporiedly been hacked, spal

B L AL am r
’
AT

DAQ has lost 3 § . which is cu r,
“* The DAO Falls \
' Attack Leading

Crash Over 209) million worth of ethereum

The event is still ongoing i . 9

stolen over 3.5 million ETH Abugin Par | another hacker attack
Ethereur ay h:

$ { frozen

The bug affects P
RRRRRRRRR "sign” a transactio
exploited it to effex
that were created

| |

The DAO hack : Reentrancy

User Contract Bank Contract

function moveBalance() { 1g(address => uint) balances; calls the default
bank.withdraw(); " ” :
m{ fallback” function
hces[msg.sender];
lue(amount)();
ces[msg.sender] = 0;

b
Later...
m balance is zeroed
l after ether transfer

function () payable {

¥

Can the user contract withdraw more than its balance?

The DAO hack: Reentrancy

User Contract Bank Contract

function moveBalance() { mapping(address => uint) balances;
bank.withdraw();

b

function withdraw() {

uint amount = balances[msg.sender];
msg.sender.call.value(amount)();
balances[msg.sender] = 0;

function () payable {
bank.withdraw();
b

calls withdraw(
before balance
Issetto 0

An attacker used this bug to steal 3.6M ether (> 1B USD today)

July 2017: Parity Multisig Bug 1

Parity Multisig Bug 1: Unprivileged Write to Storage

@ Wallet Contract

address owner = ...;

Any user may
change the function initWallet(address owner

,
wallet’s owner

function withdraw(uint amount

if (msg.sender == owner) {

msg.sender.transfer(_amount); On|y the owner can
} o
} withdraw ether

An attacker used a similar bug to steal S30M in July 2017

Four months later... Parity Multisig Bug 2

Parity Multisig Bug 2: Frozen Wallets

@ Wallet Contract Execute the @ Wallet Library
code in the
address walletLibrary = ... // address wallet Iibrary
function() payable function() payable {
walletLibrary.delegatecall(msg.data); allback

}

aw(uint amoun function withdraw(uint amount) {

walletLibrary.delegatecall(msg.data); withdraw funds

}

However, in Ethereum, smart contracts can be killed!

&

Wallet Library

Parity Multisig Bug 2: Frozen Wallets

An attacker
deleted the
library

E Wallet Contract

address walletLibrary = ... // address

function() payable

walletLibrary.delegatecall(msg.data); No withdraws

are possible

in O] W Al dW] diT] O]

walletLibrary.delegatecall(msg.data);

A user froze S170M by deleting the wallet library

Relevant Security Properties...

Unexpected ether flows
Insecure coding, such as unprivileged writes
Use of unsafe inputs (e.g., reflection, hashing, ...)

Reentrant method calls (e.g., DAO bug)

00|« 2| ia)

Manipulating ether flows via transaction reordering

Many of these are nontrivial trace-/hyper-properties

Automated Security Analysis of Smart Contracts:
Challenges and Gaps

Security Analysis (high-level view)

Security
-~])
3 Violations

'.:.!'[..\
. .’

All possible
contract
behaviors

n | |
'wl =

/
\
"

Minor issue © : Smart contracts are written in Turing-complete languages

Automated Security Solutions

Truffle Oyente, Mythril, MAIAN

:'N——'ﬁ’ \ —
\Tilel s Cdmy @

\

. L)
r.:;:;:_e‘:;/ l 7!
(G- %N N
V

\ '~ '\-;1.'1_'.-& f~_- -_'
Testing Dynamic (symbolic) analysis
Report true bugs Report true bugs
Can miss bugs Can miss bugs

Bug finding

I SECURIFY

WANTED: Automated Verifier

Can report false alarms
No missed bugs

Verification

Domain-Specific Insight:

When contracts satisfy/violate a property, they often
also satisfy/violate a much simpler property

Example: The DAO Hack

Security property
No state changes after call instructions

Hard to verify

in general

Compliance pattern
No writes to storage may follow call instructions

Violation pattern
A write to storage must follow call instructions

function withdraw() {
uint amount = balances[msg.sender];

msg.sender.call.value(amount)();
balances[msg.sender] = O;

b

Verifies 91% of all
deployed contracts

Easier to check
automatically

Classifying Behaviors using Compliance and Violation
Patterns

Unsafe behaviors Safe behaviors

o Compliance
Violation A pattern
pattern

O
4 O

¢

- a

O
¢ ¢
- € Violation
B No violation
All behaviors A A

A Warning

All unsafe behaviors are reported

A practical verifier for Ethereum
smart contracts:

s - fully-automated
—— .
— - scalable

- precise
- publicly available

www.securify.ch

I SECURIFY :

Beta version released in Fall 2017

- Regularly used by auditors to perform
orofessional security audits </> > 8K uploaded smart contracts

") 95% positive feedback

) 225 > 800 users signed up for updates
New release coming up very soon > & P P

@ Interesting discussions on Reddit

AlexanderSupersioth 12 points
mcgravier 22 points

Please, someone, humour a layman: how can a Turing

Seems almost too good to be true :) What are the limitations complete language be formally verified?

and how exactly does it work under the hood? v
[thought formally verifiable languages were necessarily not
It's great that the authors of the tool are aware they art

(&)

Turing complete, and we can therefore not formally verify
set of behaviors in the growing direction. That's the way Solidity

safety properties without false-negatives. I'm interested how they compare
their EVM semantics against other EVM implementations in the wild.

Securify: Under the Hood

00: 60 09: x = Balance MemTag(0x20, Balance)
©2: 5b 02: y = 0x20 MemTag(0x40, Const)
04: 42 04: If (x == 0x00) VarTag(z, Const)
06: 80 06: MStore(y, Xx) VarTag(k, Gas) Check
08: 90 Rl 08: z =y Assign(s, 0x20) patterns
Pa: 56 Qa: goto Ox42 Call(s, k)
EVM Intermediate Semantic Representation
Bytecode Representation

Fully automated, sound, scalable, extensible

Securify: Under the Hood

P0: 60 P0: X = Balance
©2: 5b 02: y = 0x20
04: 42 04: If (x == Ox00)

06: 80 06: MStore(y, Xx)

08: 90 Rl 08: z =y
Pa: 56 Qa: goto 0x42

EVM Intermediate
Bytecode Representation

From EVM to CFG over SSA

00: push 0x04

00: 60 04 02: dataload L1 a = Ox04
: 03: push €8 L2 b = dataload(a)
02: 35 60 Dl
04: 08 56 05: Jump L3 ABI_9DA8(b)
. 06: jumpdest L4 stop()
86: 5B 00
07: stop
08: 58 60 [. >
. 08: jumpdest
OA: 00 56
ac: 60 00 09: push 6x00 ABI_9DA8(b) {
OE: 55 56 OB: sload LS5 ¢ = 9x00
’ : OC: push 06x00
: OE: sstore L6 sstore(c, b);
EVM code OF: Jump }
Parsed code Decompiled code

Decompiling EVM bytecode:

Convert into static single assignment form (each variable is assigned once)
Perform partial evaluation (to resolve jump destination, memory/storage offsets)

ldentify and inline methods (to enable context-sensitive analysis)
Construct control-flow graph

Securify: Under the Hood

09: x = Balance MemTag(0x20, Balance)
02: y = 0x20 MemTag(0x40, Const)

04: If (x == 0x00) VarTag(z, Const)
06: MStore(y, Xx) VarTag(k, Gas)
08: z =y Assign(s, 0x20)

Qa: goto Ox42 Call(s, k)

Intermediate Semantic Representation
Representation

Which facts are relevant for verifying smart contracts?

Semantic Facts

Many properties can be checked on the contract’s dependency graph

Flow dependencies

MayFollow(l,l") The instruction at label [may follow
that at label [’

MustFollow(l,l") The instruction at label [must follow A tag can be an

that at label [instruction (e.g.
Data dependencies Caller) ora

MayDepOn(x,t) The value of x may depend on tz variable

DetBy(x,t) For different values of t the value of x
is different.

The inference of all semantic facts is declaratively specified in Datalog

Example: MayFollow

MayFollow(i, j) « Follow(i, j)
MayFollow(i,j) « Follow(i, k), MayFollow(k, j)

" o e Follow(1,2)
Follow(2,3)

/\ » Follow(3,4)
Follow(2,5)

3:y--; 5:y:=0 FOllOW(5,6)

4: return 6: return

Datalog input

MayFollow(1,2)
MayFollow(1,3)

MayFollow(1,4)
MayFollow(1,5)

MayFollow(1,6)

MayFollow(2,3)
MayFollow(2,4)
MayFollow(2,5)
MayFollow(2,6)
MayFollow(3,4)
MayFollow(5,6)

Datalog fixpoint

Deriving MayDepOn

1: x := Balance

2: Mstore(0x20, x)
3:y:=MLoad(0x20)

4:72:=x+y

MayDepOn(x,t) <« Assign(x,t)

Derived from

Follow(1,2) the Balance

Follow(2,3) instruction
Follow(3,4) -

I Assign(x, Balance) 148
[sConst(0x20)
MStore(2,0x20,x)

Memory
operations

Capture that

‘ Z is derived
om x and y

MayDepOn(x,t) « Op(__, x,x"),MayDepOn(x’', t)
MayDepOn(x,t) « MLoad(l,x,0),isConst(l,0), MemTag(l,o,t)
MayDepOn(x,t) « MLoad(l,x,0),-isConst(l,0), MemTag(l,__,t)

MemTag(l,o0,t) « MStore(l,0,x),isConst(o), MayDepOn(x,t)
MemTag(l,T,t) « MStore(l,o0,x), ~isConst(o), MayDepOn(x,t)
MemTag(l,0,t) « Follows(l,l"), MemTag(l’,o0,t),~MStore(l,0,_)

Securify: Under the Hood

MemTag(0x20, Balance)
MemTag(0x40, Const)

VarTag(z, Const)

VarTag(k, Gas) Check
Assign(s, 0x20) patterns

Call(s, k)

Semantic Representation

Patterns DSL

(Labels) [::= (labels)

(Vars) x ::= (variables)

(Tags) t =1 | x

(Instr) n == Instr(l, x, ..., x)

(Facts) f = MayFollow(l, 1) | MustFollow(l,)

| MayDepOn(x,t) | DetBy(x,t)
(Patterns) pa=f|Vnp|Inip|pAp|—p

Detecting the DAO Hack

Call instruction
followed by a

function withdraw() { write to storage
uint amount = balances[msg.sender];

msg.sender.call.value(amount)();
palances| msg.sender]| = 0;

b Formalized as a
trace property

Security property: No state changes after call instructions
Compliance pattern Call(l,_,_,):—~3SStore(l’,_,). MayFollow(l, ")
Violation pattern Call(l,_,_,):3SStore(l’,_,). MustFollow(l,1")

Proofs establish a formal logical relation between the property and its patterns

Detecting Unrestricted Writes

Unrestricted

address owner =..,;
write

function initWallet(address owner

owner = _owner;

Formalized as a

hyperproperty

Security property: No storage offset is writable by all users

Compliance pattern SStore(_, x,_): DetBy(x, Caller)

Violation pattern SStore(l, x,): =MayDepOn(x, Caller)
A = MayDepOn(l, Caller)

How well does this approach work in practice?

Securify vs. Existing Solutions

State-of-the-art security checkers for Ethereum smart contracts
- QOyente
- Mythril

Dataset
- 80 open-source smart contracts

Experiment
- Run contracts using Securify, Oyente, and Mythril
- Manually inspect each reported vulnerability

Securify vs. Oyente vs. Mythril

@ Tr ue wamings gVohton
gFalse war nings @ Unrepo rted vulner abilite s
&
6 0% S
& 3
S\ O %
S S

4 Q% %Q)o © @Q

)
&
o
20%

0%

-2 0%

. N

Transaction Reentrancy Handled Restricted
reordering exception transfer

Research

Il SRL [®3 centere ETH

SECURE, RELIABLE, INTELLIGENT SYSTEIVSS LAB

IA\E hito://ai2.ethz.ch

L SELLL R

DECRCEN b /jaoicdeguard.con
JS MU houo//icniceorg
J;Mwh LLRsisolveror

MLLMG] hito//eventracerors

Start-ups

@ CHAINSECURITY

Securing the blockchain

https://chainsecurity.com

/)

m jobs@chainsecurity.com

’A" contact@chainsecurity.com

u @chain_security

