Random number generation failures
from Netscape to DUHK

Nadia Heninger

University of Pennsylvania

June 18, 2018

A cartoon cryptographic communication protocol

AESk(m)

A cartoon cryptographic communication protocol

AESk(m)

k = KDF(g) k = KDF(g™)

A cartoon cryptographic communication protocol

ga
gb

RSApubg, Sig”B(gaygb)
AESk(m)

AN

k = KDF(g) k = KDF(g™)

A cartoon cryptographic communication protocol

random rg, g9

random ry, g°

RSApubyg, Signg(g9,8%, ra, rp)
AESk(m)

AN

k = KDF(g) k = KDF(g™)

A cartoon cryptographic communication protocol

random r,, g9

random ry, g°

RSApubg, Signg(g?,8°, ra, rp)
AESk(m)

AN

k = KDF(g) k = KDF(g™)

“Any one who considers arithmetical methods of pro-
ducing random digits is, of course, in a state of sin.”

-John von Neumann

Cryptographic pseudorandomness in theory

Definition

A pseudorandom generator is a polynomial-time deterministic
function G mapping n-bit strings into ¢(n)-bit strings for

¢(n) > n whose output distribution G(U,) is computationally
indistinguishable from the uniform distribution Uyp.

Environmental
entropy ,—> Crypto keys

Cryptographic pseudorandomness in theory

Definition

A pseudorandom generator is a polynomial-time deterministic
function G mapping n-bit strings into ¢(n)-bit strings for

¢(n) > n whose output distribution G(U,) is computationally
indistinguishable from the uniform distribution Uyp.

Environmental
entropy ,—> Crypto keys

Problem: Environmental entropy not uniformly distributed.

Cryptographic pseudorandomness in theory

Definition

A pseudorandom generator is a polynomial-time deterministic
function G mapping n-bit strings into ¢(n)-bit strings for

¢(n) > n whose output distribution G(U,) is computationally
indistinguishable from the uniform distribution Uyp.

Environmental Crvbto kevs
entropy —| Extractor |—| G|——> Cryp y

NIST SP800-90A

“Random Number Generation using Deterministic Random Bit Generators”

Consuming Application

Personalization String Additional Input

Nomce Eniropy Input

= L 1

Pseudorandom Ouiput

| |
|
} Instantiake Reseed i
| Function Function I
| i
| |
! |
| |
|
1 Uninstantiaie | Generaie !
: Function R Function :
I
| i
| |
1 s !
] _ |
| N N |
i AT 1
1 |

Figure 1: DRBG Functional Model

Practical Considerations with RNGs

e Problem: Inputs might not be random.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

e Problem: Testing for randomness is theoretically
impossible.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.
Solution: Seed from a variety of sources and hope
attacker doesn't control everything.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.
Solution: Seed from a variety of sources and hope
attacker doesn't control everything.

* Problem: How often do you reseed?

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.
Solution: Seed from a variety of sources and hope
attacker doesn't control everything.

* Problem: How often do you reseed?
Possible solutions:
1. On every new input.
2. After k inputs accumulated in input pools.
3. After ¢ blocks of outputs requested.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.
Solution: Seed the PRNG.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.
Solution: Seed the PRNG.

¢ Problem: User might request output before seeding
RNG.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.
Solution: Seed the PRNG.

¢ Problem: User might request output before seeding
RNG.
Possible solutions:
1. Don't provide output.
2. Provide output.
3. Raise an error flag.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.
Solution: Seed the PRNG.

¢ Problem: User might request output before seeding
RNG.
Possible solutions:

1. Don't provide output.
2. Provide output.
3. Raise an error flag.

¢ Problem: RNG is seeded with low entropy inputs.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.
Solution: Seed the PRNG.

¢ Problem: User might request output before seeding
RNG.
Possible solutions:

1. Don't provide output.
2. Provide output.
3. Raise an error flag.

¢ Problem: RNG is seeded with low entropy inputs.
Solution: Seed with high entropy inputs.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.
Solution: Seed the PRNG.

¢ Problem: User might request output before seeding

RNG.
Possible solutions:

1. Don't provide output.
2. Provide output.
3. Raise an error flag.

¢ Problem: RNG is seeded with low entropy inputs.
Solution: Seed with high entropy inputs.

¢ Problem: User might use flawed or backdoored PRNG
design.

Practical considerations with RNGs

...that don't make sense in theory.

¢ Problem: User might not seed PRNG.
Solution: Seed the PRNG.

¢ Problem: User might request output before seeding

RNG.
Possible solutions:

1. Don't provide output.
2. Provide output.
3. Raise an error flag.

¢ Problem: RNG is seeded with low entropy inputs.
Solution: Seed with high entropy inputs.

¢ Problem: User might use flawed or backdoored PRNG
design.
Solution: Don't use vulnerable designs.

Disaster 1. Debian OpenSSL

Luciano Bello, 2008

When Private Keys are Public: Results from the 2008 Debian
OpenSSL Vulnerability Yilek, Rescorla, Shacham, Enright,
Savage. (2009)

Problem: User might not seed PRNG.
Solution: Seed the PRNG.

OpenSSL PRNG

%

cryptographic
keys
t

OpenSSL PRNG

N N

word size time @ pid endianness

Linux PRNG

/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
* are what we will use now, but other threads may use them
* as well */

md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
if (!'do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

EVP_MD_CTX_init (&m) ;
for (i=0; i<num; i+=MD_DIGEST_LENGTH)
{
j=(num-i);
j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;

MD_Init (&m);
MD_Update (&m,local_md,MD_DIGEST_LENGTH) ;
k=(st_idx+j)-STATE_SIZE;
if (k > 0)
{
MD_Update (&m,&(state[st_idx]),j-k);
MD_Update (&m,&(state[0]) ,k);
i3
else
MD_Update (&m,&(state[st_idx]),j);

MD_Update (&m,buf,j) ;

MD_Update (&m, (unsigned char *)&(md_c[0]),sizeof(md_c));
MD_Final(&m,local_md);

md_c[1]++;

buf=(const char *)buf + j;
for (k=0; k<j; k++)
{
/* Parallel threads may interfere with this,
* but always each byte of the new state is

* the XOR of some previous value of its
* and local md (itermediate values may be lost).

List: openssl-dev

Subject: Random number generator, uninitialised data and valgrind.
From: Kurt Roeckx <kurt () roeckx ! be>

Date: 2006-05-01 19:14:00

Hi,

When debbuging applications that make use of openssl using
valgrind, it can show alot of warnings about doing a conditional
jump based on an unitialised value. Those unitialised values are
generated in the random number generator. It’s adding an
unintialiased buffer to the pool.

The code in question that has the problem are the following 2
pieces of code in crypto/rand/md_rand.c:

247:
MD_Update (&m,buf, j) ;

467:
#ifndef PURIFY

MD_Update (&m,buf,j); /* purify complains */
#endif

What I currently see as best option is to actually comment out
those 2 lines of code. But I have no idea what effect this
really has on the RNG. The only effect I see is that the pool
might receive less entropy. But on the other hand, I’m not even
sure how much entropy some unitialised data has.

What do you people think about removing those 2 lines of code?

Kurt

Debian OpenSSL weak keys, 2006-2008

v
cryptographic
keys
t

@

OpenSSL PRNG

/TN

word size pid endianness

Estimated > 1% of HTTPS hosts affected at disclosure time.

Disaster 2: Linux boot-time
entropy hole

Mining your Ps and Qs: Widespread Weak Keys in Network
Devices Nadia Heninger, Zakir Durumeric, Eric Wustrow,
and J. Alex Halderman Usenix Security 2012

Public Keys Arjen K. Lenstra, James P. Hughes, Maxime
Augier, Joppe W. Bos, Thorsten Kleinjung, and Christophe
Wachter Crypto 2012

Weak keys remain widespread in network devices Marcella
Hastings, Joshua Fried, and Nadia Heninger IMC 2016

Problem: User might request output before seeding RNG.
Solution: Make sure RNG is seeded before providing output.

Linux OS RNG

€@
/// ' \\

boot ~ version
time string

/dev/random /dev/urandom
“high-quality” pseudorandomness
pseudorandomness

never blocks
blocks if insufficient entropy

“As a general rule, /dev/urandomshould be used for everything
except long-lived GPG/SSL/SSH keys.”—man random

RNG designs vs. real-world users

/dev/urandom can indeed run out of entropy if it is called repeat-
edly.

- Random person on Bitcoin forum

/dev/random is too severe. It's basically designed to be an
information-theoretic random source, which means you could use
its output as a one-time pad even if your adversary were time-
travelling deities with countless universes full of quantum comput-
ers at their disposal.

- Random person on Hacker News

/* We’ll use /dev/urandom by default,
since /dev/random is too much hassle. If
system developers aren’t keeping seeds
between boots nor getting any entropy from
somewhere it’s their own fault. x/

#define DROPBEAR_RANDOM_DEV "/dev/urandom"

Widespread RNG failures on low resource devices

Problem # 1: Devices lack many default entropy inputs.

Linux PRNG
// /NN

version
string

Linux boot-time entropy hole

Problem #2: PRNG waited to mix entropy inputs into output

pool for fear of active attacks.

Ubuntu Server 10.04 on simulated low resource device

250 T T T T T T T T T T T 25,000 _
,,,,,,,,,)
Z 200 ™) 20,000 20
< 3
= 2
g 150 | i 15,000 =
£ El
B100F i Input pool entropy estimate 10,000 E
? — Input threshold to update entropy pool 9
g 500 - - - Bytes read from nonblocking pool 15.000 g
—— SSH process seeds from /dev/urandom 8
z

0 I I I I I I I I I I

R \ | .
0 10 15 20 25 30 35 40
Time since boot (s)

SSH process starts

Patched since July 2012.

entropy pool updated

Linux getrandom() (introduced in 2014) has correct interface: blocks if not

seeded, always provides output if seeded.

Cascading OpenSSL and Linux PRNG
N\
*J
RSA keys

T

@

OpenSSL PRNG

Many devices automatically
generate crypto keys on first boot.

Va I AN e The Linux PRNG had not yet
time pid been seeded when queried by
OpenSSL = deterministic
@/ output.
Linux PRNG
/ / \ \ e Headless or embedded devices

< . often lack these entropy
¥ ® < T

sources.

Result: Widespread weak cryptographic keys.
In 2012, computed private keys for:

® 64,000 HTTPS servers (0.5%).
e 107,000 SSH servers (1%).

e 2 PGP users (and a few hundred invalid keys).

Result: Widespread weak cryptographic keys.
In 2012, computed private keys for:

® 64,000 HTTPS servers (0.5%).
e 107,000 SSH servers (1%).

e 2 PGP users (and a few hundred invalid keys).

What has happened since?
¢ 103 Taiwanese citizen smart card keys [Bernstein, Chang,

Cheng, Chou, Heninger, Lange, van Someren 2013]

e 90 export-grade HTTPS keys.

[Albrecht, Papini, Paterson, Villanueva-Polanco 2015]

® 313,330 HTTPS, SSH, IMAPS, POP3S, SMTPS keys
[Hastings Fried Heninger 2016]

e 3,337 Tor relay RSA keys.
[Kadianakis, Roberts, Roberts, Winter 2017]

Follow-up study: Six years of weak keys

Question: Do vendors actually fix flaws after vulnerability disclosure?
e 65 million distinct HTTPS certificates : 2.2% vulnerable
e 1.5 billion HTTPS host records : 0.19% vulnerable

EFF P&Q Ecosystem Rapid7 Censys
I

40M <1
e
10M o

) I I T

s

Total

0 M | | | | | | |

80K T T T T T T T
60K = -~
40K | « v
20K | .

OK — | | | | | | |

\

Vulnerable

N0 AN Wb A
Q’\\fk%\@ \0\790600 >

Juniper
SRX Series Service Gateways, LN1000 Mobile Secure Router
e Security advisories in April, July 2012
e Majority of factored keys in 2012
¢ 30,000 Juniper-fingerprinted hosts went offline after
Heartbleed

EFF P&Q Ecosystem Rapid7 Censys

I I I ™ I I I

80K Total — ..o-"'"""w.
v 60K| - . Etebents
§ a0k . «~—— Heartbleed
ok | VuInerabI.e _-—-—-—.. .
OK \. \. | | | o A—-\
IR A Q2

Q
B P VLT e

Huawei

¢ Introduced vulnerability in 2014

e Security advisory published Aug 2016

EFF P&Q Ecosystem Rapid7 Censys
. 607000 B | | | ™ I I ’."\
£ 40,000 | -
2 20,000
0 oo s . 0 ® M#m.-d ! |
% 3,000 [I I I I I I }‘\
g 2,000 + -
2 1,000/ -
3 o=« . . S—_al |
:9\,99\6 ,’LQ"\\ ,’)90 m@b(: S : S
SVRY” A7 P % SV

Disaster 3: Netscape SSL RNG [Goldberg Wagner 1996]
Problem: RNG is seeded with low entropy inputs.

global variable seed;

RNG_CreateContext ()
(seconds, microseconds) = time of day; /* Time elapsed since 1970 */
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid <« 12));
seed = MD5(a, b);

mklcpr(x) /* not cryptographically significant; shown for completeness */
return ((OxDEECE66D * x + 0x2BBB62DC) » 1);

RNG_GenerateRandomBytes ()
x = MD5(seed);
seed = seed + 1;
return x;

global variable challenge, secret_key;

create_key ()
RNG_CreateContext () ;

challenge = RNG_GenerateRandomBytes();
secret_key = RNG_GenerateRandomBytes();

Disaster 4 :
a h DUHK attack

Practical state recovery attacks against legacy RNG
implementations Shaanan Cohney, Matthew D. Green, Nadia
Heninger. 2017.

Problem: RNG is seeded with low entropy inputs.
Solution: Seed with high entropy inputs.

Problem: User might use flawed PRNG design.
Solution: Don't use vulnerable designs.

The ANSI X9.31 PRNG

e On each iteration, mixes state V;_; with timestamp T;.
¢ Produces output block R; and new state V;.

e Uses block cipher as a mixing function.

T, - AESK »O— AESKk Vi

Vie1 ~b— AESK - R;

ANSI X9.31 PRNG History

e 1985: DES-based PRNG standardized in ANSI X9.17

e 1992: Adopted as a FIPS standard

® 1994: Included on list of approved RNGs in FIPS 140-1
e 1998: Variant using 3DES standardized in ANSI X9.31
e 1998: Kelsey et al.: state recovery if key known

e 2004: ANSI X9.31 RNG included in FIPS 186-2

e 2005: AES-based variant published by NIST and
included on FIPS 140-2 approved RNGs

e 2011: FIPS deprecates ANSI X9.31 design
e 2016: ANSI X9.31 RNG removed from FIPS 140-2

X9.31 state recovery from a known key
[Kelsey, Schneier, Wagner, Hall 1998]

If key K used with block cipher is known, can recover state
from output by brute forcing timestamp.

AESk

AESK

NIST ANSI X9.31 RNG standardization failure

"For AES 128-bit key, let *K be a 128 bit key."

"This *K is reserved only for the generation of pseudo
random numbers."

e Standard did not specify key should not be hard-coded.

Using FIPS 140 to find broken implementations

e FIPS 140 requires vendors to document key generation
and storage policies in detail.

e We searched FIPS security policies to find documented
hard-coded X9.31 keys.

| 127 | 149 12
No information | Not vulnerable | Vulnerable
0 50 100 150 200 250 300

"Compiled into binary" "statically stored in the code" "Hard Coded"
"generated external to the module" "Stored in flash" "Static key, Stored in
the firmware" "Entered in factory" "loaded at factory" "Static" "Embedded
in FLASH" "Injected During Manufacture" "Hard-coded in the module"

Passive RNG state recovery in the IPsec protocol

Targeting Fortigate VPNs

random rg, 8¢

Y

random ry,, g°

A

Auth(rq, g9 1y, 8°)

>
>

Auth(rq, 8% rp, 8")

>
>

k = KDF(g®) AES,(m)

k = KDF(g®)

>

>

e Need raw PRNG outputs for state recovery attack.

e |dea: Use the random nonces.

e After state recovered, then recover secret exponents.

Passive decryption for Fortigate IPsec VPNs

FortiOS v4 hard-coded NIST test vector key

22> work brute-forcing timestamps for state recovery

Performed internet-wide scans and successfully
recovered private keys against hosts in the wild.

ANSI X9.31 RNG no longer included in FortiOS v5;
FortiOS v4 patched since November 2016

Disaster 5: Dual EC DRBG

On the Practical Exploitability of Dual EC in TLS
Implementations Checkoway, Fredrikson, Niederhagen,
Everspaugh, Green, Lange, Ristenpart, Bernstein,
Maskiewicz, Shacham. Usenix Security 2014.

Problem: User might use backdoored PRNG design.
Solution: Don't use vulnerable designs.

Dual EC DRBG

sfo srQnf Baract
t

Q Pseudorandom
Bits

[Optional]
additional input
0

i
If additional input = Null

Figure 13: Dual_EC_DRBG

Parameters: Pre-specified points P and Q.

Seed: 32-byte integer s

State: x-coordinate of sP.

Update: t = s® optional additional input. State s = x(tP).
Output: 30 least significant bytes of x(sQ) at state s.

Dual EC DRBG History

e Early 2000s: NSA designed and pushed to standardize
e 2004: Published as part of ANSI X9.82 part 3 draft
e 2005: Standardized in NIST SP 800-90 draft

e 2007: Shumow, Ferguson demonstrate theoretical
backdoor

e 2013: Snowden documents lead to renewed interest in
Dual EC

e 2014: Practical attacks on TLS using Dual EC
demonstrated

e 2015: NIST removes Dual EC from list of approved
PRNGs

Shumow and Ferguson 2007

*pnL 8 N r | Extraet
[Optional] o @ e fo rop} - Fe
additional input T t

0 P Q Pseudorandom
! .
If additionsl Input = Null Bits

Figure 13: Dual_EC_DRBG

1. Assume attacker controls standard and constructs
points with known relationship P = dQ.

2. Attacker gets 30 bytes of x-coordinate of sQ.

3. Attacker brute forces 2'® MSBs to generate candidates
for sQ.

4. For each candidate sQ attacker compares dsQ = sP to
next output.

September 2013: NSA Bullrun in NY Times

(TSHSIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, IT systems,
networks, and endpoint communications devices used by targets.

(TS/SIHREL TO USA, FYEY) Collect target network data and metadata via cooperative network carriers
and/or incressed control over core networks,

(TSHSIREL TOUSA, FVEY) Leverage commercial capabilities wo remotely deliver or recelve information
Lo and from target endpoints.

(TSHSIVREL TO USA, FYEY) Exploit foreign trusted compuling platforms and technologies.
(TSHSIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

{TS/ST/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wircless (NGW) communications.

Dual EC Attack Complexity in TLS Implementations
Checkoway et al. 2014

Table 1: Summary of our results for Dual EC using NIST P-256.

Default Cache Ext. Bytes per Adin Attack Time

Library PRNG Output Random Session Entropy Complexity (minutes)

BSAFE-C v1.1 v v el 31-60 — 30-2%(C, +¢y) 0.04
BSAFE-Java v1.1 v i 28 — 22Y(C,+5¢)) 63.96
SChannel If 28 — 21(C,+4Cy) 62.97
SChannel II¥ 30 — 23(c, +¢p) +2'7(5¢y) 182.64
OpenSSL-fixed I 32 20 2B +3¢) +220(2cy) 0.02
OpenSSL-fixed I11** 32 35+k 215(C,+3C)+2%k(2c,) 288332

* Assuming process ID and counter known. = Assuming 15 bits of entropy in process ID, maximum counter of 2%, See Section 4.3.
T With a library—compile-time flag. # Versions tested: Windows 7 64-bit Service Pack 1 and Windows Server 2010 R2.

Disaster 6: The Juniper Dual EC
Incident

A Systematic Analysis of the Juniper Dual EC Incident
Checkoway, Maskiewicz, Garman, Fried, Cohney, Green,
Heninger, Weinmann, Rescorla, Shacham. CCS 2016.

Problem: User might use backdoored PRNG design.
Solution: Don't use vulnerable designs.

the grugq l"fiFauow --_.I
@thegrugq N

Woah! Juniper discovers a backdoor to
decrypt VPN traffic (and remote admin) has
been inserted into their OS source

Important Announcement about ScreenOS®

IMPORTANT JUNIFER SECURITY ANNOUNCEMENT
EJ CUSTOMER UPDATE: DECEMBER 20, 2015 Administrative
Access (CVE-2015-7755) only affects ScreenOS 6.3.0r17 through

forums.juniper.net

S

Diff of VPN code change

5AC63!8AA3A93E7B3EBBD557—C53B@F63BCE3C3E27D2604B

6B17D1F2E12C4247F8BCEGES563A440F277037D812DEB33A0
FFFFFFFFO@0Q0@RFFFFFFFFFFFFFFFFBCEGFAADA7179E84F3B9CAC2FC632551
bad: 958532QEEAF81044F20D55030A035B11BECE81C785E6C333E4A8A131F6578107
good: 2c55e5e45edf713dc43475effeB8813a60326a64d9ba3d2e39cb639b@f3boad10
nist:c97445f45cdef9f0d3e05e1e585fc297235b82b5be8ff3efcab7c59852018192

Juniper cascaded Dual EC with ANSI X9.31

e ScreenOS only FIPS validated for ANSI X9.31, not Dual EC
¢ Juniper used non-default points for Dual EC

The following product families do utilize Dual_EC_DRBG, but do not use the pre-defined points cited by NIST:
1. ScreenOS*

* ScreenOS does make use of the Dual_EC_DRBG standard, but is designed to not use Dual_EC_DRBG as its primary
random number generator. ScreenOS uses it in a way that should not be vulnerable to the possible issue that has been
brought to light. Instead of using the NIST recommended curve points it uses self-generated basis points and then takes
the output as an input to FIPS/ANSI X.9.31 PRNG, which is the random number generator used in ScreenOS
cryptographic operations.

ScreenOS RNG “cascade” outputs raw Dual EC

void prng_generate(void) {
prng_output_index = 0;
++blocks_generated_since_reseed;
if (lone_stage_rng())
prng_reseed() ;
for (; prng_output_index <= Ox1F; prng_output_index += 8) {
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

ScreenOS RNG “cascade” outputs raw Dual EC

void prng_generate(void) {
prng_output_index = 0;
++blocks_generated_since_reseed;
if ('one_stage_rng()) // always reseed with Dual EC
prng_reseed() ;
for (; prng_output_index <= Ox1F; prng_output_index += 8) {
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32) // generate Dual EC output
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

ScreenOS RNG “cascade” outputs raw Dual EC

void prng_generate(void) {
prng_output_index = 0; // global variable
++blocks_generated_since_reseed;
if (lone_stage_rng())
prng_reseed() ;
for (; prng_output_index <= 0x1F; prng_output_index += 8) { // never runs
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
¥
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prong_output_index = 32; // set to 32

ScreenOS RNG “cascade” outputs raw Dual EC

void prng_generate(void) {
prng_output_index = 0;
++blocks_generated_since_reseed;
if (lone_stage_rng())
prng_reseed() ;
for (; prng_output_index <= Ox1F; prng_output_index += 8) {
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy (&prng_temporary [prng_output_index], prng_block, 8); // reuses buffer
} // output is raw Dual EC output!
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32) // generate Dual EC output
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

Passive state recovery in ScreenQS IPsec

random rg, g¢

Y

random ry,, g°

A

Auth(rq, g% 1y, &%)
Auth(rg, g%, rp, &%)

>
>

>
>

k = KDF(g"") AES,(m) k = KDF(g?)

>
>

e Use random nonces to carry out state recovery attack.
e ScreenOS used 32-byte nonce — efficient attack.
e After state recovered, then recover secret exponents.

ScreenQS Version History

Screen0S 6.1.0r7 ScreenOS 6.2.0r0 (2008)
e ANSI X9.31 e Dual EC — ANSI X9.31
e Seeded by interrupts e Reseed bug exposes raw Dual EC
e Reseed every 10k calls e Reseed every call
e 20-byte IKE nonces ® Nonces generated before keys

32-byte IKE nonces

e Attacker changed constantin 6.2.0r15 (2012).
e But passive decryption enabled in earlier release.

e Juniper’s "fix" was to reinstate original Q value. After our
work they removed Dual EC completely.

Discussion

We see the same vulnerabilities over and over again.

Gaps between theory and practice.

Difficult to eradicate vulnerabilities from devices.

Need better automated methods for discovering RNG
bugs.

Backdoors can be repurposed.

How to generate random numbers

¢ Not everything is broken! Other RNG constructions in
NIST SP 800-90a are mostly fine if implemented
correctly and securely!

¢ Intel RDRAND, RDSEED provide fast hardware RNG
interfaces. And are probably not backdoored.

¢ Linux getrandom() provides a better interface than
urandom Of random.

