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“Any one who considers arithmetical methods of pro-
ducing random digits is, of course, in a state of sin.”

–John von Neumann



Cryptographic pseudorandomness in theory

Definition
A pseudorandom generator is a polynomial-time deterministic
function Gmapping n-bit strings into `(n)-bit strings for
`(n) ≥ n whose output distribution G(Un) is computationally
indistinguishable from the uniform distribution U`(n).

Environmental
entropy G Crypto keys

Problem: Environmental entropy not uniformly distributed.
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Cryptographic pseudorandomness in theory

Definition
A pseudorandom generator is a polynomial-time deterministic
function Gmapping n-bit strings into `(n)-bit strings for
`(n) ≥ n whose output distribution G(Un) is computationally
indistinguishable from the uniform distribution U`(n).

Environmental
entropy Extractor G Crypto keys

Problem: Environmental entropy not uniformly distributed.



NIST SP800-90A
“Random Number Generation using Deterministic Random Bit Generators”



Practical Considerations with RNGs
• Problem: Inputs might not be random.

Solution: Test for randomness.

• Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

• Problem: Inputs might be controlled by attacker.
Solution: Seed from a variety of sources and hope
attacker doesn’t control everything.

• Problem: How often do you reseed?
Possible solutions:
1. On every new input.
2. After k inputs accumulated in input pools.
3. After ` blocks of outputs requested.
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Practical considerations with RNGs
. . . that don’t make sense in theory.

• Problem: User might not seed PRNG.

Solution: Seed the PRNG.
• Problem: User might request output before seeding
RNG.
Possible solutions:
1. Don’t provide output.
2. Provide output.
3. Raise an error flag.

• Problem: RNG is seeded with low entropy inputs.
Solution: Seed with high entropy inputs.
• Problem: User might use flawed or backdoored PRNG
design.
Solution: Don’t use vulnerable designs.
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Disaster 1: Debian OpenSSL
Luciano Bello, 2008
When Private Keys are Public: Results from the 2008 Debian
OpenSSL Vulnerability Yilek, Rescorla, Shacham, Enright,
Savage. (2009)

Problem: User might not seed PRNG.
Solution: Seed the PRNG.



OpenSSL PRNG

cryptographic
keys

OpenSSL PRNG

word size time

Linux PRNG

pid endianness

SHA-1



/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
* are what we will use now, but other threads may use them
* as well */

md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);

if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

EVP_MD_CTX_init(&m);
for (i=0; i<num; i+=MD_DIGEST_LENGTH)

{
j=(num-i);
j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;

MD_Init(&m);
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
k=(st_idx+j)-STATE_SIZE;
if (k > 0)

{
MD_Update(&m,&(state[st_idx]),j-k);
MD_Update(&m,&(state[0]),k);
}

else
MD_Update(&m,&(state[st_idx]),j);

MD_Update(&m,buf,j);
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
MD_Final(&m,local_md);
md_c[1]++;

buf=(const char *)buf + j;

for (k=0; k<j; k++)
{
/* Parallel threads may interfere with this,
* but always each byte of the new state is
* the XOR of some previous value of its
* and local_md (itermediate values may be lost).
* Alway using locking could hurt performance more
* than necessary given that conflicts occur only
* when the total seeding is longer than the random
* state. */

state[st_idx++]^=local_md[k];
if (st_idx >= STATE_SIZE)

st_idx=0;
}

}
EVP_MD_CTX_cleanup(&m);



List: openssl-dev
Subject: Random number generator, uninitialised data and valgrind.
From: Kurt Roeckx <kurt () roeckx ! be>
Date: 2006-05-01 19:14:00

Hi,

When debbuging applications that make use of openssl using
valgrind, it can show alot of warnings about doing a conditional
jump based on an unitialised value. Those unitialised values are
generated in the random number generator. It’s adding an
unintialiased buffer to the pool.

The code in question that has the problem are the following 2
pieces of code in crypto/rand/md_rand.c:

247:
MD_Update(&m,buf,j);

467:
#ifndef PURIFY

MD_Update(&m,buf,j); /* purify complains */
#endif

...

What I currently see as best option is to actually comment out
those 2 lines of code. But I have no idea what effect this
really has on the RNG. The only effect I see is that the pool
might receive less entropy. But on the other hand, I’m not even
sure how much entropy some unitialised data has.

What do you people think about removing those 2 lines of code?

Kurt



Debian OpenSSL weak keys, 2006–2008

cryptographic
keys

OpenSSL PRNG

word size pid endianness

Estimated > 1% of HTTPS hosts affected at disclosure time.



Disaster 2: Linux boot-timeentropy hole
Mining your Ps and Qs: Widespread Weak Keys in Network
Devices Nadia Heninger, Zakir Durumeric, Eric Wustrow,
and J. Alex Halderman Usenix Security 2012
Public Keys Arjen K. Lenstra, James P. Hughes, Maxime
Augier, Joppe W. Bos, Thorsten Kleinjung, and Christophe
Wachter Crypto 2012
Weak keys remain widespread in network devices Marcella
Hastings, Joshua Fried, and Nadia Heninger IMC 2016

Problem: User might request output before seeding RNG.
Solution: Make sure RNG is seeded before providing output.



Linux OS RNG

boot
time

version
string

CRC, SHA-1

/dev/random
“high-quality”
pseudorandomness
blocks if insufficient entropy

/dev/urandom
pseudorandomness
never blocks

“As a general rule, /dev/urandom should be used for everything
except long-lived GPG/SSL/SSH keys.”—man random



RNG designs vs. real-world users
/dev/urandom can indeed run out of entropy if it is called repeat-
edly.

– Random person on Bitcoin forum

/dev/random is too severe. It’s basically designed to be an
information-theoretic random source, which means you could use
its output as a one-time pad even if your adversary were time-
travelling deities with countless universes full of quantum comput-
ers at their disposal.

– Random person on Hacker News

/* We’ll use /dev/urandom by default,
since /dev/random is too much hassle. If
system developers aren’t keeping seeds
between boots nor getting any entropy from
somewhere it’s their own fault. */

#define DROPBEAR_RANDOM_DEV "/dev/urandom"



Widespread RNG failures on low resource devices
Problem # 1: Devices lack many default entropy inputs.

Linux PRNG

boot
time

version
string



Linux boot-time entropy hole
Problem #2: PRNG waited to mix entropy inputs into output
pool for fear of active attacks.
Ubuntu Server 10.04 on simulated low resource device
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Patched since July 2012.
Linux getrandom() (introduced in 2014) has correct interface: blocks if not
seeded, always provides output if seeded.



Cascading OpenSSL and Linux PRNG

RSA keys

OpenSSL PRNG

time

Linux PRNG

pid

Many devices automatically
generate crypto keys on first boot.

• The Linux PRNG had not yet
been seeded when queried by
OpenSSL =⇒ deterministic
output.

• Headless or embedded devices
often lack these entropy
sources.



Result: Widespread weak cryptographic keys.
In 2012, computed private keys for:
• 64,000 HTTPS servers (0.5%).
• 107,000 SSH servers (1%).
• 2 PGP users (and a few hundred invalid keys).

What has happened since?
• 103 Taiwanese citizen smart card keys [Bernstein, Chang,
Cheng, Chou, Heninger, Lange, van Someren 2013]
• 90 export-grade HTTPS keys.
[Albrecht, Papini, Paterson, Villanueva-Polanco 2015]
• 313,330 HTTPS, SSH, IMAPS, POP3S, SMTPS keys
[Hastings Fried Heninger 2016]
• 3,337 Tor relay RSA keys.
[Kadianakis, Roberts, Roberts, Winter 2017]
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Follow-up study: Six years of weak keys
Question: Do vendors actually fix flaws after vulnerability disclosure?

• 65 million distinct HTTPS certificates : 2.2% vulnerable
• 1.5 billion HTTPS host records : 0.19% vulnerable
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Juniper
SRX Series Service Gateways, LN1000 Mobile Secure Router

• Security advisories in April, July 2012
• Majority of factored keys in 2012
• 30,000 Juniper-fingerprinted hosts went offline after
Heartbleed
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Huawei

• Introduced vulnerability in 2014
• Security advisory published Aug 2016
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Disaster 3: Netscape SSL RNG [Goldberg Wagner 1996]
Problem: RNG is seeded with low entropy inputs.

global variable seed;

RNG_CreateContext()
(seconds, microseconds) = time of day; /* Time elapsed since 1970 */
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid « 12));
seed = MD5(a, b);

mklcpr(x) /* not cryptographically significant; shown for completeness */
return ((0xDEECE66D * x + 0x2BBB62DC) » 1);

RNG_GenerateRandomBytes()
x = MD5(seed);
seed = seed + 1;
return x;

global variable challenge, secret_key;

create_key()
RNG_CreateContext();
...
challenge = RNG_GenerateRandomBytes();
secret_key = RNG_GenerateRandomBytes();



Disaster 4: ANSI X9.31and the DUHK attack

Practical state recovery attacks against legacy RNG
implementations Shaanan Cohney, Matthew D. Green, Nadia
Heninger. 2017.

Problem: RNG is seeded with low entropy inputs.
Solution: Seed with high entropy inputs.
Problem: User might use flawed PRNG design.
Solution: Don’t use vulnerable designs.



The ANSI X9.31 PRNG

• On each iteration, mixes state Vi−1 with timestamp Ti.
• Produces output block Ri and new state Vi.
• Uses block cipher as a mixing function.

Ti AESK

Vi−1 ⊕ AESK

⊕ AESK Vi

Ri



ANSI X9.31 PRNG History

• 1985: DES-based PRNG standardized in ANSI X9.17
• 1992: Adopted as a FIPS standard
• 1994: Included on list of approved RNGs in FIPS 140-1
• 1998: Variant using 3DES standardized in ANSI X9.31
• 1998: Kelsey et al.: state recovery if key known
• 2004: ANSI X9.31 RNG included in FIPS 186-2
• 2005: AES-based variant published by NIST and
included on FIPS 140-2 approved RNGs
• 2011: FIPS deprecates ANSI X9.31 design
• 2016: ANSI X9.31 RNG removed from FIPS 140-2



X9.31 state recovery from a known key
[Kelsey, Schneier, Wagner, Hall 1998]

If key K used with block cipher is known, can recover state
from output by brute forcing timestamp.

Ti AESK

Vi−1 ⊕ AESK

⊕ AESK Vi

Ri



NIST ANSI X9.31 RNG standardization failure

"For AES 128-bit key, let *K be a 128 bit key."
"This *K is reserved only for the generation of pseudo
random numbers."

• Standard did not specify key should not be hard-coded.



Using FIPS 140 to find broken implementations

• FIPS 140 requires vendors to document key generation
and storage policies in detail.
• We searched FIPS security policies to find documented
hard-coded X9.31 keys.

0 50 100 150 200 250 300

12149127

No information | Not vulnerable | Vulnerable

"Compiled into binary" "statically stored in the code" "Hard Coded"
"generated external to the module" "Stored in flash" "Static key, Stored in
the firmware" "Entered in factory" "loaded at factory" "Static" "Embedded
in FLASH" "Injected During Manufacture" "Hard-coded in the module"



Passive RNG state recovery in the IPsec protocol
Targeting Fortigate VPNs

random ra, ga
random rb, gb

k = KDF(gab) k = KDF(gab)

Auth(ra, ga, rb, gb)
Auth(ra, ga, rb, gb)

AESk(m)

• Need raw PRNG outputs for state recovery attack.
• Idea: Use the random nonces.
• After state recovered, then recover secret exponents.



Passive decryption for Fortigate IPsec VPNs

• FortiOS v4 hard-coded NIST test vector key
• 225 work brute-forcing timestamps for state recovery
• Performed internet-wide scans and successfully
recovered private keys against hosts in the wild.

• ANSI X9.31 RNG no longer included in FortiOS v5;
FortiOS v4 patched since November 2016



Disaster 5: Dual EC DRBG
On the Practical Exploitability of Dual EC in TLS
Implementations Checkoway, Fredrikson, Niederhagen,
Everspaugh, Green, Lange, Ristenpart, Bernstein,
Maskiewicz, Shacham. Usenix Security 2014.

Problem: User might use backdoored PRNG design.
Solution: Don’t use vulnerable designs.



Dual EC DRBG

• Parameters: Pre-specified points P and Q.
• Seed: 32-byte integer s
• State: x-coordinate of sP.
• Update: t = s⊕optional additional input. State s = x(tP).
• Output: 30 least significant bytes of x(sQ) at state s.



Dual EC DRBG History

• Early 2000s: NSA designed and pushed to standardize
• 2004: Published as part of ANSI X9.82 part 3 draft
• 2005: Standardized in NIST SP 800-90 draft
• 2007: Shumow, Ferguson demonstrate theoretical
backdoor
• 2013: Snowden documents lead to renewed interest in
Dual EC
• 2014: Practical attacks on TLS using Dual EC
demonstrated
• 2015: NIST removes Dual EC from list of approved
PRNGs



Shumow and Ferguson 2007

1. Assume attacker controls standard and constructs
points with known relationship P = dQ.

2. Attacker gets 30 bytes of x-coordinate of sQ.
3. Attacker brute forces 216 MSBs to generate candidates
for sQ.

4. For each candidate sQ attacker compares dsQ = sP to
next output.



September 2013: NSA Bullrun in NY Times



Dual EC Attack Complexity in TLS Implementations
Checkoway et al. 2014



Disaster 6: The Juniper Dual EC
Incident
A Systematic Analysis of the Juniper Dual EC Incident
Checkoway, Maskiewicz, Garman, Fried, Cohney, Green,
Heninger, Weinmann, Rescorla, Shacham. CCS 2016.

Problem: User might use backdoored PRNG design.
Solution: Don’t use vulnerable designs.





Diff of VPN code change



Juniper cascaded Dual EC with ANSI X9.31

• ScreenOS only FIPS validated for ANSI X9.31, not Dual EC
• Juniper used non-default points for Dual EC



ScreenOS RNG “cascade” outputs raw Dual EC

void prng_generate(void) {
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prng_reseed();

for (; prng_output_index <= 0x1F; prng_output_index += 8) {
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy(&prng_temporary[prng_output_index], prng_block, 8);

}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler("FIPS ERROR: PRNG failure, unable to reseed\n", 11);

memcpy(prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy(prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

}



ScreenOS RNG “cascade” outputs raw Dual EC

void prng_generate(void) {
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng()) // always reseed with Dual EC
prng_reseed();

for (; prng_output_index <= 0x1F; prng_output_index += 8) {
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy(&prng_temporary[prng_output_index], prng_block, 8);

}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32) // generate Dual EC output // global variable
error_handler("FIPS ERROR: PRNG failure, unable to reseed\n", 11);

memcpy(prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy(prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

}
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x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy(&prng_temporary[prng_output_index], prng_block, 8);

}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
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ScreenOS RNG “cascade” outputs raw Dual EC

void prng_generate(void) {
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prng_reseed();

for (; prng_output_index <= 0x1F; prng_output_index += 8) {
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
memcpy(&prng_temporary[prng_output_index], prng_block, 8); // reuses buffer

} // output is raw Dual EC output!
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32) // generate Dual EC output
error_handler("FIPS ERROR: PRNG failure, unable to reseed\n", 11);

memcpy(prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy(prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

}



Passive state recovery in ScreenOS IPsec

random ra, ga
random rb, gb

k = KDF(gab) k = KDF(gab)

Auth(ra, ga, rb, gb)
Auth(ra, ga, rb, gb)

AESk(m)

• Use random nonces to carry out state recovery attack.
• ScreenOS used 32-byte nonce =⇒ efficient attack.
• After state recovered, then recover secret exponents.



ScreenOS Version History

ScreenOS 6.1.0r7
• ANSI X9.31
• Seeded by interrupts
• Reseed every 10k calls
• 20-byte IKE nonces

ScreenOS 6.2.0r0 (2008)
• Dual EC→ ANSI X9.31
• Reseed bug exposes raw Dual EC
• Reseed every call
• Nonces generated before keys
• 32-byte IKE nonces

• Attacker changed constant in 6.2.0r15 (2012).
• But passive decryption enabled in earlier release.
• Juniper’s "fix" was to reinstate original Q value. After our
work they removed Dual EC completely.



Discussion

• We see the same vulnerabilities over and over again.

• Gaps between theory and practice.

• Difficult to eradicate vulnerabilities from devices.

• Need better automated methods for discovering RNG
bugs.

• Backdoors can be repurposed.



How to generate random numbers

• Not everything is broken! Other RNG constructions in
NIST SP 800-90a are mostly fine if implemented
correctly and securely!

• Intel RDRAND, RDSEED provide fast hardware RNG
interfaces. And are probably not backdoored.

• Linux getrandom() provides a better interface than
urandom or random.


