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Outsourcing Data to the Cloud
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Data upload

Search query

Matching records

Client Server

• For encrypted database systems:

• Data = collection of records in a database (e.g. health records).
• Query examples =

- Find records with a given value (e.g. patients aged 57).
- Find records within a given range (e.g. patients aged 55 to 65).
- …

Update query



Security of Data Outsourcing Solutions
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Query
Matching records

Client Adversarial server

• Adversaries:
• Network adversary = observes traffic on network.
• Snapshot adversary = breaks into server, gets snapshot of memory.
• Persistent adversary = corrupts the server for a period of time; sees all 

communication transcripts. Can be server itself.
• Security goal = privacy:

Adversary learns as little as possible about the client’s data and queries.

Network adversary



State of the Art

4

• Network attacker apparently easy to defeat using network encryption, 
e.g. TLS.

• For snapshot and persistent attackers: no perfect solution.

Every solution is a trade-off between functionality and security.

• Huge amount of literature.
[AKSX04], [BCLO09], [PKV+14] , [BLR+15], [NKW15], [K15], [CLWW16], 
[KKNO16] , [RACY16], [LW16] …

• A few “complete” solutions:

Mylar (for web apps)

CryptDB (handles most of SQL)

➔Cipherbase (Microsoft), Encrypted BigQuery (Google), …
• Very active area of research.

⚠ Controversial!



Setting for this Talk: Schemes Supporting Range Queries
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Range = [40,100]

Client Server

• All known schemes leak to the server the set of matching records = access 
pattern.

OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15],…
• Some schemes also leak # records below queried range endpoints = rank.

FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,…
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Setting for this Talk: Schemes Supporting Range Queries
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Range = [40,100]

Client Server

• Could hide access pattern from server by using ORAM (at huge cost).

• But volume of responses (number of records) would still leak to server.

• Volume would also leak to network adversary unless traffic padding mechanisms 
were used; these are rare in practice (cf. AES-GCM in TLS).

• Motivates consideration of volume attacks.
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Exploiting Leakage
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• Most schemes prove that nothing more leaks than their leakage model 
allows. 

• For example, leakage = volume, access pattern, or access pattern + rank.

• What can we really learn from this leakage?

Our goals: 

• Volume leakage only: distribution reconstruction (DR) = recover the 
number of times each value occurs in the database.

• Access pattern (+ rank): full reconstruction = recover the exact value for 
every record.



Exploiting Leakage – State of the Art
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[KKNO16]: If N denotes the number of distinct data items, then:

• O(N2 log N) queries suffice for full reconstruction, using only access pattern 
leakage.

• O(N4 log N) queries suffice for distribution reconstruction, using only volume 
leakage.

(NB: In both cases, because of inherent symmetry, only reconstruction up to 
reflection is possible.)



Exploiting Leakage – Highlights of Our Results
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[LMP18] (eprint 2017/701; S&P18):

• O(N log N) queries suffice for full reconstruction, using only access pattern 
leakage.

- where N is the number of possible values (e.g. 125 for age in years).

- provided data is dense (every value occurs at least once).

[GLMP]:

• O(N2 log N) queries suffice for distribution reconstruction, using only volume 
leakage.

- provided the number of records R is larger than about N2/2.



Attacks from Access Pattern Leakage [LMP18]



Assumptions for Analysis

1. Data is dense: all values appear in at least one record.
Can be relaxed in some of our attacks.

2. Range queries are uniformly distributed.
Our algorithms don’t actually care though – the assumption is only used 
for computing upper bounds on required number of queries.
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Main Results from [LMP18]

1. Full reconstruction with O(N logN) queries from access pattern 
leakage

– in fact, N · (3 + log N).
1. s

2. Approximate reconstruction with relative accuracy ε with      
O(N · (log 1/ε)) queries. 

3. Approximate reconstruction using an auxiliary distribution and 
rank leakage.

– more efficient in practice, evaluation via simulation.
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Attack 1: Full Reconstruction



Full Reconstruction with Rank Leakage

• Adversary is observing query leakage…
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(Reordered for 
convenience)

Hidden Leaked

Query [x,y] a = rank(x-1) b = rank(y) Matching IDs

[1,18] 0 1200 M1

[2,10] 500 800 M2

[7,98] 600 3000 M3

[55,125] 2000 4000 M4

M1

M2

M3

0 500 #Records = 4000

…

Rank

M4

1200…



Full Reconstruction with Rank Leakage

15

M1

M2

M3

1 … #Records

…

Rank

M4

f!" ∖ (!% ∪
!' ∪ !()

… f!" ∩ !' ∖
(!% ∪ !()

…

• Order sets by rank.

• Partition records into smallest possible sets using access pattern leakage.

• If this partitions records into N sets, win! Just match minimal sets with 
values.



Full Reconstruction with Rank Leakage

• Expected number of queries sufficient for full reconstruction is 
at most:

N · (2 + log N)    for N ≥ 27.

• Essentially a coupon collector’s problem.

• Expected number of necessary queries is at least: 
1/2 · N · log N – O(N) 

for any algorithm.

• This algorithm is “data-optimal”, i.e. it fails iff full reconstruction 
is impossible for any algorithm given the input data.
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Full Reconstruction without Rank Leakage

• More general setting: now use only access pattern leakage.

• Partition (as before), then sort (see slides ahead).

• Expected number of sufficient queries is at most:
N · (3 + log N) for N ≥ 26

- i.e. new sorting step is very cheap in terms of data.

• Expected number of necessary queries is at least:
1/2 · N · log N – O(N) 

for any algorithm.

• Still data-optimal!
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Full Reconstruction (without Rank Leakage): 
Sorting Step
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M7

M39

M72

M36

M93

M58

M28

M9

M40

M18

all records

1 or N

Interval of size N-1



Full Reconstruction (without Rank Leakage): 
Sorting Step – Extending 
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M22

M36

M25

all records

M17

T

TM62

M81 T
…



Full Reconstruction (without Rank Leakage): 
Sorting Step – Extending 
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all records



T

Full Reconstruction (without Rank Leakage): 
Sorting Step
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all records

M27

M39

M3

M13

T

M52

TM99
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Full Reconstruction (without Rank Leakage): 
Sorting Step
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all records

T

…



Full Reconstruction (without Rank Leakage): 
Proof Intuition

• Hard part is to show that O(N log N) queries suffice, with a small 
constant.

• Proof consists of showing that if certain favourable range queries 
are made, then partitioning succeeds in constructing N classes, 
and sorting succeeds in ordering them.

• Coupon collecting bounds then establish that O(N log N) queries 
are enough.
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Attack 3: Reconstruction with Auxiliary Data



Reconstruction with Auxiliary Data and Rank Leakage

• As before, queries have ranges chosen uniformly at random.

• Assume access pattern and rank are leaked.

• We now also assume that an approximation to the 
distribution on values is known.

“Auxiliary distribution”.

From aggregate data, or from another reference source.

• We show experimentally that, under these assumptions, far 
fewer queries are needed.
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Auxiliary Data Attack: Estimating Step

Rank-
ordered 
records
1

4000

a

b

Match

Values

0

125

x

y

Expected value
restricted to [x,y]

Point guess v 
(or confidence 

interval)

20% 20%

Inverse CDF 
of auxiliary 
distribution



Auxiliary Data Attack: Experimental Evaluation

• Ages, N = 125 (0 to 124).

• Health records from US hospitals (NIS HCUP 2009).

• Target: age of individual hospitals' records.

• Auxiliary data: aggregate of 200 hospitals' records.

• Measure of success: proportion of records with value guessed 
within ε.
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Auxiliary Data Attack: 
Results for Typical Target Hospital
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Auxiliary Data Attack: 
Results with Perfect Auxiliary Distribution
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Summary of Attacks from [LMP18]
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Full reconstruction in ≈N log N queries with only access pattern.

Efficient, data-optimal algorithms + matching lower bound.

Attack Req'd leakage Other req'ts Suff. # queries

KKNO16 AP Density O(N2 log N)

Full AP + rank Density N · (log N + 2) 

AP Density N · (log N + 3)

ε-approximate AP Density 5/4 N · (log 1/ε) + O(N)

Auxiliary AP + rank Auxiliary dist. Experimental

• For N = 125, about 800 queries suffice for full reconstruction!

• If an auxiliary distribution + rank leakage is available, after only 25 queries, 

55% of records can be reconstructed to within 5 years.



Attacks based on Volume Leakage



Volume Leakage
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Range = [40,100]

Client Server

• Now only volume of responses (number of records) leaks to server or 
network adversary.

• Much tougher attack setting.

• Target is distribution reconstruction: how many records have each value.
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Exploiting Volume Leakage – State of the Art
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[KKNO16]:

• O(N4 log N) queries suffice for distribution reconstruction, using volume 
leakage.

• Two attacks: polynomial factorisation and heuristic assignment algorithm.

• Complexity of former scales badly with N.

• Both attacks rely heavily on assumption that range queries are uniformly
random, and fail badly if there is any deviation from this assumption.

• [KKNO16] also show that Ω(N4) queries are required for certain pathological
distributions.



Exploiting Volume Leakage – Main Results from [GLMP] 
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• Distribution Reconstruction from volume leakage, provided R, the 

number of records is large enough (about N
2
). 

• Attack only needs to see each query once.

• It then needs O(N
2

log N) queries under a uniform query assumption; more generally, the 

coupon-collector number for the query distribution.

• Subsequent recovery of value of any new record added to the database 

using volume leakage from O(N) queries . 

• Online query reconstruction using an auxiliary distribution (or the 

distribution recovered in the first attack).



Distribution Reconstruction from Volume 
Leakage



Distribution Reconstruction fromVolume Leakage

• Adversary is observing volume  leakage…
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Hidden Leaked

Query [x,y] a = rank(x-1) b = rank(y) Matching IDs Volume

[1,18] 0 1200 M1 1200

[2,10] 500 800 M2 300

[7,98] 600 3000 M3 2400

[55,125] 2000 4000 M4 2000

Key considerations:

• For uniformly random range queries, after O(N2 log N) queries, all volumes 
will have been observed.  

• This set of volumes has a lot of additive structure.



Distribution Reconstruction fromVolume Leakage
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• Suppose enough queries have been made that all possible volumes have 
been observed (O(N2 log N) queries for uniform distribution).

• Can deduce R, the total number of records (it’s the largest volume).

• Consider volumes for the set of ranges [1,1], [1,2],….[1,N]: elementary 
ranges/volumes.

• If we can identify these, then DR becomes easy: just do pairwise subtractions.

• On the other hand,  the elementary volumes are very special:

• They are complemented: if V is elementary, then R-V must also be a volume.

• Every volume arises as an elementary volume or the difference of two 
elementary volumes: Vol([i,j]) = Vol([1,j]) – Vol([1,i]).

• So the (absolute value of the) difference of elementary volumes is always a 
volume. 



Distribution Reconstruction by Clique Finding
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Let’s build a graph!

• Vertices are identified with complemented volumes (includes elementary volumes 
but maybe more).

• Add an edge between two vertices if the difference in volumes of vertices is also a 
volume.

• Recall: “The (absolute value of the) difference of elementary volumes is always a 
volume”.

• This implies that the set of elementary ranges forms an N-clique in the graph.

• Basic idea: build the graph and use your favourite clique-finding algorithm to identify 
an N-clique!

• (But clique-finding is hard in general - NP-complete.)

• (And there may be many additional vertices and edges in the graph not arising from 
elementary volumes.)



Distribution Reconstruction by Clique Finding
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Graph pre-processing:

• Certain vertices and edges must be in the N-clique: any volumes occurring at 
a single edge/vertex.

• Certain vertices cannot be in the clique: vertices not connected to all of 
these necessary vertices by an edge.

• Iterate based on these two properties, maximum O(N2) iterations.

• Bootstrapping: smallest complemented volume must be in clique, as must 
largest volume R (corresponding to range [1,N]).

• Our experiments with real databases show that, very often, preprocessing
finds the required clique (or its symmetric complement).

• Doing actual clique-finding is redundant in these cases!



Example of Distribution Reconstruction by 
Preprocessing
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Example: N=4, R=20, record values: 

1,1,1,2,2,2,2,2,3,3,3,3,3,3, 3,3,3,3,3,4

Volume leakage: {1,3,5,8,11,12,16,17,19,20}

Other volumes: 
[2,2]: 5
[2,3]: 16
[2,4]: 17
[3,3]: 11
[3,4]: 12
[4,4]: 1

Elementary volumes: 
[1,1]:   3 
[1,2]:   8
[1,3]: 19
[1,4]: 20 



Example of Distribution Reconstruction by 
Preprocessing
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Volume leakage: 
{1,3,5,8,11,12,16,17,19,20}

Complemented volumes give 
initial vertex set: 

{1, 3, 8, 12, 17, 19, 20*} 

x 5 (15 not a volume)
x 11 (9 not a volume)
x 16 (4 not a volume)

*included by definition; 
complement is 0.

Bootstrapping:

1 and 20 must be in the clique 
(smallest complemented volume, 
largest volume).
(1,3) is not an edge – eliminate 3;
(1,8) is not an edge – eliminate 8;
(1,19) is not an edge – eliminate 19.

This leaves {1, 12, 17, 20}

Recovering the database counts:
1 

12-1 = 11
17-12= 5 
20-17= 3
which is correct up to reflection!



Distribution Reconstruction by Preprocessing: 
Experimental Evaluation
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Distribution Reconstruction by Clique Finding
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Clique finding:

• Pre-processing starts with a set of necessary vertices Vnec and a set of 
possible candidate vertices Vcand for the clique.

• It grows Vnec and shrinks Vcand ending with Vnec ⊆ Velem⊆ Vcand, where Velem is the set of 
elementary vertices.

• If Vnec = Vcand, then we are done (special case for sparse data, where 0 can arise as a 
volume).

• Otherwise, we extend the sub-clique on Vnec to a larger one using a special-purpose 
algorithm (target is clique on N vertices).

• Several heuristics are employed in our algorithm; these rely on various graph 
algorithms as sub-steps, including Luby’s algorithm for finding maximal independent 

sets.



Distribution Reconstruction by Preprocessing: 
Experimental Evaluation
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A Random Graph Model for Distribution Reconstruction
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• We can also build a probabilistic model of the graph in our attack.

• Assume data is uniformly distributed, so database counts follow a multinomial distribution.

• Approximate each count by a Poisson distribution; volumes of ranges are also then 

Poissonian.

• From this we can estimate that the initial graph has about 2N + N3/8(πR)1/2 vertices.

• We can also show that the graph has about N2 + N7/80(πR3)1/2 edges.

• Edge density is then O(N/R1/2).
• Applying results from random graph theory we find that, to ensure O(1) cliques, we 

need R=Ω(N2).

• This assumes we have a random graph – we manifestly do not!

• This bound on R matches well with what we observe in our experiments with HCUP 

data: for R above N2/2, the attack works well; for R below N2/2, it tends to fail.



Summary of Attacks from [GLMP]

47

Distribution reconstruction in ≈N2 log N queries for uniform ranges, using only
volume leakage, provided R = O(N2).

Attack Req'd
leakage

Other req'ts Suff. # queries

KKNO16 - DR Volume Uniform queries O(N4 log N)

DR Volume R = O(N2) O(N2 log N) for uniform 
queries

Update data
recovery

Volume R = O(N2) O(N)  (random graph model)

Online query recon Volume Auxiliary dist. Experimental



Conclusions



Conclusions
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• Many clever schemes have been designed, enabling range queries on encrypted 

data.

• OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15], FH-OPE, Lewi-Wu, 
Arx, Cipherbase, EncKV,…

• Second-generation schemes defeat the snapshot adversary (with caveats).

• It is important to analyse impact of leakage of these schemes. 

• No known scheme offers meaningful privacy against a persistent adversary 

(including server itself).

• In realistic settings, N logN queries suffice; even less if auxiliary distribution + rank 

leakage is known.

• One can apply ORAM to hide the access pattern leakage, but then performance 

suffers and volume attacks are still possible.

• And were already possible for a network attacker!



Future Work

50

• More research is needed!

• Overall goal: since perfect security is too expensive, we 
need to raise the bar for the attacker without hurting 
performance too much.

• And for schemes supporting richer classes of queries than 
just range queries.

• Some kind of ORAM with limited locality? (Sacrificing 
ORAM’s strong obliviousness guarantees for better 
performance.)

• Exploration of the effectiveness of adding padding and/or 
noise in preventing attacks.


