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Outsourcing Data to the Cloud

Data upload

—

Search query

M—

atching records

— Update query

Client ' Server

* Forencrypted database systems:

» Data = collection of records in a database (e.g. health records).

* Query examples =
- Find records with a given value (e.g. patients aged 57).

- Find records within a given range (e.g. patients aged 55 to 65).



Security of Data Outsourcing Solutions

Network adversary

\4

Query

M—

atching records

_

Client Adversarial server

Adversaries:
*  Network adversary = observes traffic on network.

*  Snapshot adversary = breaks into server, gets snapshot of memory.
*  Persistent adversary = corrupts the server for a period of time; sees all
communication transcripts. Can be server itself.

Security goal = privacy:
Adversary learns as little as possible about the client’s data and queries.



State of the Art

*  Network attacker apparently easy to defeat using network encryption,
e.g. TLS.

*  For snapshot and persistent attackers: no perfect solution.
Every solution is a trade-off between functionality and security.

*  Huge amount of literature.

[AKSX04], [BCLO09], [PKV+14] , [BLR+15], [NKW15], [K15], [CLWW16],
[KKNO16] , [RACY16], [LW16] ...

Afew"“complete” solutions:
Mylar (for web apps)
CryptDB (handles most of SQL)

-> Cipherbase (Microsoft), Encrypted BigQuery (Google), ...
*  Very active area of research.

! Controversial!



Setting for this Talk: Schemes Supporting Range Queries

—

Client Server
1 2 3 4

*  Allknown schemes leak to the server the set of matching records = access
pattern.

OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15],...
*  Some schemes also leak # records below queried range endpoints = rank.
FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,...



Setting for this Talk: Schemes Supporting Range Queries

—

Client 2 records Server
1 2 3 4

. Could hide access pattern from server by using ORAM (at huge cost).

. But volume of responses (number of records) would still leak to server.,

. Volume would also leak to network adversary unless traffic padding mechanisms
were used; these are rare in practice (cf. AES-GCM in TLS).

. Motivates consideration of volume attacks.




Exploiting Leakage

Most schemes prove that nothing more leaks than their leakage model
allows.

For example, leakage = volume, access pattern, or access pattern + rank.

What can we really learn from this leakage?

Our goals:

Volume leakage only: distribution reconstruction (DR) = recover the
number of times each value occurs in the database.

Access pattern (+ rank): full reconstruction = recover the exact value for
every record.



Exploiting Leakage — State of the Art

[KKNO26]: If N denotes the number of distinct data items, then:

* O(Nzlog N) queries suffice for full reconstruction, using only access pattern
leakage.

* O(N4log N) queries suffice for distribution reconstruction, using only volume
leakage.

(NB: In both cases, because of inherent symmetry, only reconstruction up to
reflection is possible.)



Exploiting Leakage — Highlights of Our Results

[LMPa8] (eprint 2017/701; S&P18):

* O(Nlog N) queries suffice for full reconstruction, using only access pattern
leakage.

- where N is the number of possible values (e.g. 125 for age in years).

- provided data is dense (every value occurs at least once).

[GLMP]:
* O(Nzlog N) queries suffice for distribution reconstruction, using only volume
leakage.
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Attacks from Access Pattern Leakage [LMPa8]



Assumptions for Analysis

1. Datais dense: all values appear in at least one record.

Can be relaxed in some of our attacks.

2. Range queries are uniformly distributed.

Our algorithms don’t actually care though —the assumption is only used
for computing upper bounds on required number of queries.




Main Results from [LMP18]

1. Full reconstruction with O(N logN) queries from access pattern
leakage

—infact, N- (3 +log N).

3. Approximate reconstruction using an auxiliary distribution and
rank leakage.

—more efficient in practice, evaluation via simulation.
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Full Reconstruction with Rank Leakage

* Adversary is observing query leakage...

Hidden Leaked
I O O T
[1,18] 1200

(Reordered for [2,10] 500 800 M:
convenience) [7,98] 600 3000 M3

[55,125] 2000 4000 M4

Rank o 500 1200 #Records = 4000
M
M:
M;




Full Reconstruction with Rank Leakage

Rank 1 #Records

ﬁ
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* Order sets by rank.

* Partition records into smallest possible sets using access pattern leakage.

* If this partitions records into N sets, win! Just match minimal sets with

values.




Full Reconstruction with Rank Leakage

» Expected number of queries sufficient for full reconstruction is
at most:

N-(2+logN) forN = 27.
* Essentially a coupon collector’s problem.

* Expected number of necessary queries is at least:
1/2 - N -log N-O(N)

for any algorithm.

* This algorithm is “data-optimal”, i.e. it fails iff full reconstruction
is impossible for any algorithm given the input data.



Full Reconstruction without Rank Leakage

* More general setting: now use only access pattern leakage.
 Partition (as before), then sort (see slides ahead).

* Expected number of sufficient queries is at most:
N - (3 +logN) for N = 26

- i.e. new sorting step is very cheap in terms of data.

* Expected number of necessary queries is at least:
1/2 - N -log N -O(N)

for any algorithm.

Still data-optimal!



Full Reconstruction (without Rank Leakage):

Sorting Step

all records
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Full Reconstruction (without Rank Leakage):

Sorting Step — Extending

all records

M25
M36
M22
M17
!
|ntersect' ™ D
|
Trlm Mes: L T
Ms: T




Full Reconstruction (without Rank Leakage):

Sorting Step — Extending

all records
—
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Full Reconstruction (without Rank Leakage):

Sorting Step

all records
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Full Reconstruction (without Rank Leakage):

Sorting Step

all records
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Full Reconstruction (without Rank Leakage):

Proof Intuition

* Hard part is to show that O(N log N) queries suffice, with a small
constant.

* Proof consists of showing that if certain favourable range queries

are made, then partitioning succeeds in constructing N classes,
and sorting succeeds in ordering them.

* Coupon collecting bounds then establish that O(N log N) queries
are enough.




Attack 3: Reconstruction with Auxiliary Data



Reconstruction with Auxiliary Data and Rank Leakage

* As before, queries have ranges chosen uniformly at random.
* Assume access pattern and rank are leaked.

* We now also assume that an approximation to the
distribution on values is known.

"Auxiliary distribution”.
From aggregate data, or from another reference source.

* We show experimentally that, under these assumptions, far
fewer queries are needed.



Auxiliary Data Attack: Estimating Step

Inverse CDF
Rank- .

of auxiliary
ordered o .

distribution Values
records

1 0
20 20%
Expected value
restricted to [x:éi

Point guess v
(or confidence
interval)

4000 125




Auxiliary Data Attack: Experimental Evaluation

* Ages, N =125 (o to124).
* Health records from US hospitals (NIS HCUP 2009).

* Target: age of individual hospitals' records.

* Auxiliary data: aggregate of 200 hospitals' records.

* Measure of success: proportion of records with value guessed
within €.




Auxiliary Data Attack:

Results for Typical Target Hospital

1.0

Num. queries

5

10
115
1 25
[—1 50
—
—

0.8

o
o

75
100

Fraction of records
=
N

0.2

0.0
0.00 0.04 0.08 0.12 0.16 0.20 0.24

Relative error €

N
H



Auxiliary Data Attack:

Results with Perfect Auxiliary Distribution
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Summary of Attacks from [LMP18]

Full reconstruction in =N log N queries with only access pattern.

Efficient, data-optimal algorithms + matching lower bound.

AP

KKNO16

Density O(N2log N)

AP + rank Density N - (log N+ 2)

AP Density N - (log N +3)
g-approximate AP Density 5/4 N - (log 1/€) + O(N)
Auxiliary AP + rank Auxiliary dist. Experimental

* For N =125, about 800 queries suffice for full reconstruction!
 If an auxiliary distribution + rank leakage is available, after only 25 queries,
55% of records can be reconstructed to within 5 years.
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Volume Leakage

—

Client 2 records Server
1 2 3 4

*  Now only volume of responses (number of records) leaks to server or
network adversary.

*  Much tougher attack setting.
*  Target is distribution reconstruction: how many records have each value.




Exploiting Volume Leakage — State of the Art

[KKNO16]:

* O(N=+log N) queries suffice for distribution reconstruction, using volume
leakage.

* Two attacks: polynomial factorisation and heuristic assignment algorithm.

» Complexity of former scales badly with N.

* Both attacks rely heavily on assumption that range queries are uniformly
random, and fail badly if there is any deviation from this assumption.

* [KKNOz16] also show that Q(Ns) queries are required for certain pathological
distributions.



Exploiting Volume Leakage — Main Results from [GLMP]

*  Distribution Reconstruction from volume leakage, provided R, the
number of records is large enough (about N2).

*  Attack only needs to see each query once.

* Itthen needs O(N2log N) queries under a uniform query assumption; more generally, the
coupon-collector number for the query distribution.
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Distribution Reconstruction from Volume Leakage

* Adversary is observing volume leakage...

Hidden Leaked
[1,18] 1200 1200
[2,10] 500 800 M2 300
[7,98] 600 3000 M3 2400
[55,125] 2000 4000 M4 2000

Key considerations:

* For uniformly random range queries, after O(Nz log N) queries, all volumes
will have been observed.

* This set of volumes has a lot of additive structure.



Distribution Reconstruction from Volume Leakage

* Suppose enough queries have been made that all possible volumes have
been observed (O(N= log N) queries for uniform distribution).

* (Candeduce R, the total number of records (it's the largest volume).

* Consider volumes for the set of ranges [1,1], [1,2],....[1,N]: elementary
ranges/volumes.

* If we canidentify these, then DR becomes easy: just do pairwise subtractions.
* Onthe other hand, the elementary volumes are very special:
* Theyare complemented: ifV is elementary, then R-V must also be a volume.

* Everyvolume arises as an elementary volume or the difference of two
elementary volumes: Vol([i,j]) = Vol([1,j]) — Vol([1,i]).

* Sothe (absolute value of the) difference of elementary volumes is always a

volume.



Distribution Reconstruction by Clique Finding

Let’s build a graph!

Vertices are identified with complemented volumes (includes elementary volumes
but maybe more).

Add an edge between two vertices if the difference in volumes of vertices is also a
volume.

Recall: "The (absolute value of the) difference of elementary volumes is always a
volume”.

This implies that the set of elementary ranges forms an N-clique in the graph.

Basic idea: build the graph and use your favourite clique-finding algorithm to identify
an N-clique!

(But clique-finding is hard in general - NP-complete.)

(And there may be many additional vertices and edges in the graph not arising from
elementary volumes.)



Distribution Reconstruction by Clique Finding

Graph pre-processing:

Certain vertices and edges must be in the N-clique: any volumes occurring at
a single edge/vertex.

Certain vertices cannot be in the clique: vertices not connected to all of
these necessary vertices by an edge.

Iterate based on these two properties, maximum O(N2) iterations.

Bootstrapping: smallest complemented volume must be in clique, as must
largest volume R (corresponding to range [1,N]).

Our experiments with real databases show that, very often, preprocessing
finds the required clique (or its symmetric complement).

* Doing actual clique-finding is redundant in these cases!



Example of Distribution Reconstruction by

Preprocessing

Example: N=4, R=20, record values:

1l1l11 2l 2[ 2[ 2I 2[3[3[3[3[3[3[ 3[3[3[3’3’4

Elementary volumes: Other volumes:
[1,1]: 3 [2,2]: 5

[1,2]: 8 [2,3]: 16

[1,3]: 19 [2,4]: 17

[1,4]: 20 [3,3]:11

[3,4]): 12

[4,4]: 1

Volume leakage: {1,3,5,8,11,12,16,17,19,20}




Example of Distribution Reconstruction by

Preprocessing

Volume leakage:
{11 3I 5I 8l 11] 12[ 16[ 17[ 19[ 20}

Complemented volumes give
initial vertex set:

{1I 3[ 8I 12[ 17[ 19[ 20*}

X 5 (15 not avolume)
X 11 (9 not a volume)

X 16 (4 not a volume)

*included by definition;
complement is o.

Bootstrapping:

1 and 20 must be in the clique

(smallest complemented volume,
largest volume).

(3,3) is not an edge —eliminate 3;
(1,8) is not an edge — eliminate §;
(1,29) is not an edge — eliminate 19.

This leaves {1, 12, 17, 20}

Recovering the database counts:

1
12-1= 11
17-12= §
20-17= 3

which is correct up to reflection!



Distribution Reconstruction by Preprocessing:

Experimental Evaluation

Pre-processing results by attribute and data density
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Distribution Reconstruction by Clique Finding

Clique finding:

Pre-processing starts with a set of necessary vertices Vnec and a set of
possible candidate vertices Vcand for the clique.

It grows Vnec and shrinks Vcand ending with Vnec € Velem © Vcand, where Velem is the set of
elementary vertices.

If Vnec = Vcand, then we are done (special case for sparse data, where o can arise as a
volume).

Otherwise, we extend the sub-clique on Vnec to a larger one using a special-purpose
algorithm (target is clique on N vertices).

Several heuristics are employed in our algorithm; these rely on various graph
algorithms as sub-steps, including Luby’s algorithm for finding maximal independent

sets.



Distribution Reconstruction by Preprocessing:

Experimental Evaluation

Number of hospitals

Overall experimental results by attribute and data density
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A Random Graph Model for Distribution Reconstruction

* We can also build a probabilistic model of the graph in our attack.
* Assume data is uniformly distributed, so database counts follow a multinomial distribution.

* Approximate each count by a Poisson distribution; volumes of ranges are also then
Poissonian.

* From this we can estimate that the initial graph has about 2N + N3/8(mtR)¥2 vertices.
* We can also show that the graph has about N2+ N7/80(mtR3)1/2edges.
« Edge density is then O(N/R2/2),
* Applying results from random graph theory we find that, to ensure O(1) cliques, we
need R=Q(N?2).
* This assumes we have a random graph — we manifestly do not!

* Thisbound on R matches well with what we observe in our experiments with HCUP
data: for R above N2/2, the attack works well; for R below N2/2, it tends to fail.



Summary of Attacks from [GLMP]

Distribution reconstruction in =N2 log N queries for uniform ranges, using only
, provided R = O(Nz2).

Attack Req'd Otherreq'ts Suff. # queries
leakage

KKNO16 - DR Volume Uniform queries  O(N4log N)

Volume R =0(N2) O(N2log N) for uniform
queries
Update data Volume R =0(N2) O(N) (random graph model)

recovery

Online query recon Volume Auxiliary dist. Experimental
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Conclusions

Many clever schemes have been designed, enabling range queries on encrypted
data.

* OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15], FH-OPE, Lewi-Wu,
Arx, Cipherbase, EnckV,...

Second-generation schemes defeat the snapshot adversary (with caveats).
It is important to analyse impact of leakage of these schemes.

No known scheme offers meaningful privacy against a persistent adversary
(including server itself).

* Inrealistic settings, N logN queries suffice; even less if auxiliary distribution + rank
leakage is known.

One can apply ORAM to hide the access pattern leakage, but then performance
suffers and volume attacks are still possible.

* And were already possible for a network attacker!



Future Work

More research is needed!

Overall goal: since perfect security is too expensive, we
need to raise the bar for the attacker without hurting
performance too much.

And for schemes supporting richer classes of queries than
just range queries.

Some kind of ORAM with limited locality? (Sacrificing
ORAM'’s strong obliviousness guarantees for better

performance.)

Exploration of the effectiveness of adding padding and/or
noise in preventing attacks.



