Analysing Access Pattern and Volume Leakage from Range Queries on Encrypted Data

Kenny Paterson @kennyog

based on joint work with

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud

Information Security Group

Outsourcing Data to the Cloud

- For encrypted database systems:
 - Data = collection of records in a database (e.g. health records).
 - Query examples =
 - Find records with a given value (e.g. patients aged 57).
 - Find records within a given range (e.g. patients aged 55 to 65).

- ...

Security of Data Outsourcing Solutions

Adversaries:

- Network adversary = observes traffic on network.
- Snapshot adversary = breaks into server, gets snapshot of memory.
- Persistent adversary = corrupts the server for a period of time; sees all communication transcripts. Can be server itself.
- Security goal = privacy:

Adversary learns as little as possible about the client's data and queries.

State of the Art

- Network attacker apparently easy to defeat using network encryption, e.g. TLS.
- For snapshot and persistent attackers: no perfect solution.

Every solution is a trade-off between **functionality** and **security**.

Huge amount of literature.

```
[AKSX04], [BCLO09], [PKV+14], [BLR+15], [NKW15], [K15], [CLWW16], [KKNO16], [RACY16], [LW16]...
```

A few "complete" solutions:

Mylar (for web apps)

CryptDB (handles most of SQL)

Controversial!

- → Cipherbase (Microsoft), Encrypted BigQuery (Google), ...
- Very active area of research.

Setting for this Talk: Schemes Supporting Range Queries

 All known schemes leak to the server the set of matching records = access pattern.

OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15],...

Some schemes also leak # records below queried range endpoints = rank.
 FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,...

Setting for this Talk: Schemes Supporting Range Queries

- Could hide access pattern from server by using ORAM (at huge cost).
- But volume of responses (number of records) would still leak to server.
- Volume would also leak to network adversary unless traffic padding mechanisms were used; these are rare in practice (cf. AES-GCM in TLS).
- Motivates consideration of volume attacks.

Exploiting Leakage

- Most schemes prove that nothing more leaks than their leakage model allows.
- For example, leakage = volume, access pattern, or access pattern + rank.
- What can we really learn from this leakage?

Our goals:

- Volume leakage only: distribution reconstruction (DR) = recover the number of times each value occurs in the database.
- Access pattern (+ rank): full reconstruction = recover the exact value for every record.

Exploiting Leakage – State of the Art

[KKNO16]: If N denotes the number of distinct data items, then:

- O(N² log N) queries suffice for full reconstruction, using only access pattern leakage.
- O(N⁴ log N) queries suffice for distribution reconstruction, using only volume leakage.

(NB: In both cases, because of inherent symmetry, only reconstruction up to reflection is possible.)

Exploiting Leakage – Highlights of Our Results

[LMP18] (eprint 2017/701; S&P18):

- O(N log N) queries suffice for full reconstruction, using only access pattern leakage.
 - where N is the number of possible values (e.g. 125 for age in years).
 - provided data is **dense** (every value occurs at least once).

[GLMP]:

- O(N² log N) queries suffice for distribution reconstruction, using only volume leakage.
 - provided the number of records R is larger than about N2/2.

Attacks from Access Pattern Leakage [LMP18]

Assumptions for Analysis

1. Data is **dense**: all values appear in at least one record.

Can be relaxed in some of our attacks.

2. Range queries are uniformly distributed.

Our algorithms don't actually care though – the assumption is only used for computing upper bounds on required number of queries.

Main Results from [LMP18]

 Full reconstruction with O(N logN) queries from access pattern leakage

$$-\inf \operatorname{fact}, N \cdot (3 + \log N).$$

- 2. Approximate reconstruction with relative accuracy ϵ with $O(N \cdot (log 1/\epsilon))$ queries.
- 3. Approximate reconstruction using an auxiliary distribution and rank leakage.
 - more efficient in practice, evaluation via simulation.

Attack 1: Full Reconstruction

Full Reconstruction with Rank Leakage

• Adversary is observing query leakage...

	Hidden	Leaked			
	Query [x,y]	a = rank(x-1)	b = rank(y)	Matching IDs	
r	[1,18]	0	1200	М1	
	[2,10]	500	800	M ₂	
	[7,98]	600	3000	M ₃	
	[55,125]	2000	4000	M ₄	

(Reordered for convenience)

 M_4

Full Reconstruction with Rank Leakage

- Order sets by rank.
- Partition records into smallest possible sets using access pattern leakage.
- If this partitions records into N sets, win! Just match minimal sets with values.

Full Reconstruction with Rank Leakage

 Expected number of queries sufficient for full reconstruction is at most:

$$N \cdot (2 + \log N)$$
 for $N \ge 27$.

- Essentially a coupon collector's problem.
- Expected number of **necessary** queries is at least:

$$1/2 \cdot N \cdot \log N - O(N)$$

for *any* algorithm.

• This algorithm is "data-optimal", i.e. it fails iff full reconstruction is impossible for *any* algorithm given the input data.

Full Reconstruction without Rank Leakage

- More general setting: now use only access pattern leakage.
- Partition (as before), then sort (see slides ahead).
- Expected number of **sufficient** queries is at most: $N \cdot (3 + log N)$ for $N \ge 26$
 - i.e. new sorting step is very cheap in terms of data.
- Expected number of **necessary** queries is at least: $1/2 \cdot N \cdot log N O(N)$
 - for any algorithm.
- Still data-optimal!

Full Reconstruction (without Rank Leakage): Sorting Step

Full Reconstruction (without Rank Leakage): Sorting Step – Extending

all records M_{25} M_{36} M_{22} *M*₁₇ Intersect! Trim! *M*62 M₈₁

Full Reconstruction (without Rank Leakage): Sorting Step – Extending

all records

Full Reconstruction (without Rank Leakage): Sorting Step

Full Reconstruction (without Rank Leakage): Sorting Step

all records

. . .

Full Reconstruction (without Rank Leakage): Proof Intuition

- Hard part is to show that O(N log N) queries suffice, with a small constant.
- Proof consists of showing that **if** certain favourable range queries are made, then partitioning succeeds in constructing N classes, and sorting succeeds in ordering them.
- Coupon collecting bounds then establish that O(N log N) queries are enough.

Attack 3: Reconstruction with Auxiliary Data

Reconstruction with Auxiliary Data and Rank Leakage

- As before, queries have ranges chosen uniformly at random.
- Assume access pattern and rank are leaked.
- We now also assume that an approximation to the distribution on values is known.

"Auxiliary distribution".

From aggregate data, or from another reference source.

• We show experimentally that, under these assumptions, far fewer queries are needed.

Auxiliary Data Attack: Estimating Step

Auxiliary Data Attack: Experimental Evaluation

- Ages, N = 125 (o to 124).
- Health records from US hospitals (NIS HCUP 2009).
- Target: age of individual hospitals' records.
- Auxiliary data: aggregate of 200 hospitals' records.
- Measure of success: proportion of records with value guessed within ε.

Auxiliary Data Attack: Results for Typical Target Hospital

Auxiliary Data Attack: Results with Perfect Auxiliary Distribution

Summary of Attacks from [LMP18]

Full reconstruction in ≈N log N queries with only access pattern.

Efficient, data-optimal algorithms + matching lower bound.

Attack	Req'd leakage	Other req'ts	Suff. # queries	
KKNO16	AP	Density	O(N ² log N)	
Full	AP + rank	Density	N · (log N + 2)	
	AP	Density	N · (log N + 3)	
ε-approximate	AP	Density	5/4 N · (log 1/ε) + O(N)	
Auxiliary	AP + rank	Auxiliary dist.	Experimental	

- For N = 125, about 800 queries suffice for full reconstruction!
- If an auxiliary distribution + rank leakage is available, after only 25 queries, 55% of records can be reconstructed to within 5 years.

Attacks based on Volume Leakage

Volume Leakage

- Now only volume of responses (number of records) leaks to server or network adversary.
- Much tougher attack setting.
- Target is distribution reconstruction: how many records have each value.

Exploiting Volume Leakage – State of the Art

[KKNO16]:

- O(N⁴ log N) queries suffice for distribution reconstruction, using volume leakage.
- Two attacks: polynomial factorisation and heuristic assignment algorithm.
- Complexity of former scales badly with N.
- Both attacks rely heavily on assumption that range queries are uniformly random, and fail badly if there is any deviation from this assumption.
- [KKNO16] also show that $\Omega(N_4)$ queries are **required** for certain pathological distributions.

Exploiting Volume Leakage – Main Results from [GLMP]

- **Distribution Reconstruction** from volume leakage, provided R, the number of records is large enough (about N²).
 - Attack only needs to see each query once.
 - It then needs O(N² log N) queries under a uniform query assumption; more generally, the coupon-collector number for the query distribution.
- Subsequent recovery of value of any new record added to the database using volume leakage from O(N) queries .
- Online query reconstruction using an auxiliary distribution (or the distribution recovered in the first attack).

Distribution Reconstruction from Volume Leakage

Distribution Reconstruction from Volume Leakage

Adversary is observing volume leakage...

	Leaked			
Query [x,y]	a = rank(x-1)	b = rank(y)	Matching IDs	Volume
[1,18]	0	1200	Mı	1200
[2,10]	500	800	M 2	300
[7,98]	600	3000	M ₃	2400
[55,125]	2000	4000	M ₄	2000

Key considerations:

- For uniformly random range queries, after O(N² log N) queries, all volumes will have been observed.
- This set of volumes has a lot of additive structure.

Distribution Reconstruction from Volume Leakage

- Suppose enough queries have been made that all possible volumes have been observed (O(N² log N) queries for uniform distribution).
- Can deduce R, the total number of records (it's the largest volume).
- Consider volumes for the set of ranges [1,1], [1,2],....[1,N]: elementary ranges/volumes.
 - If we can identify these, then DR becomes easy: just do pairwise subtractions.
- On the other hand, the elementary volumes are very special:
 - They are complemented: if V is elementary, then R-V must also be a volume.
 - Every volume arises as an elementary volume or the difference of two elementary volumes: Vol([i,j]) = Vol([1,j]) - Vol([1,i]).
 - So the (absolute value of the) difference of elementary volumes is always a volume.

Distribution Reconstruction by Clique Finding

Let's build a graph!

- Vertices are identified with complemented volumes (includes elementary volumes but maybe more).
- Add an edge between two vertices if the difference in volumes of vertices is also a volume.
- Recall: "The (absolute value of the) difference of elementary volumes is always a volume".
- This implies that the set of elementary ranges forms an N-clique in the graph.
- Basic idea: build the graph and use your favourite clique-finding algorithm to identify an N-clique!
- (But clique-finding is hard in general NP-complete.)
- (And there may be many additional vertices and edges in the graph not arising from elementary volumes.)

Distribution Reconstruction by Clique Finding

Graph pre-processing:

- Certain vertices and edges **must** be in the N-clique: any volumes occurring at a single edge/vertex.
- Certain vertices cannot be in the clique: vertices not connected to all of these necessary vertices by an edge.
- **Iterate** based on these two properties, maximum O(N2) iterations.
- **Bootstrapping**: smallest complemented volume **must** be in clique, as must largest volume R (corresponding to range [1,N]).
- Our experiments with real databases show that, very often, preprocessing finds the required clique (or its symmetric complement).
 - Doing actual clique-finding is redundant in these cases!

Example of Distribution Reconstruction by Preprocessing

Example: N=4, R=20, record values:

Elementary volumes:

[1,1]: 3 [1,2]: 8 [1,3]: 19 [1,4]: 20

Other volumes:

Volume leakage: {1,3,5,8,11,12,16,17,19,20}

Example of Distribution Reconstruction by Preprocessing

Volume leakage:

*{*1,3,5,8,11,12,16,17,19,20*}*

Complemented volumes give initial vertex set:

x 5 (15 not a volume)

x 11 (9 not a volume)

x 16 (4 not a volume)

*included by definition; complement is o.

Bootstrapping:

1 and 20 must be in the clique (smallest complemented volume, largest volume).

(1,3) is not an edge — eliminate 3; (1,8) is not an edge — eliminate 8; (1,19) is not an edge — eliminate 19.

This leaves {1, 12, 17, 20}

Recovering the database counts:

1

12-1 = 11

17-12= 5

20-17= 3

which is correct up to reflection!

Distribution Reconstruction by Preprocessing: Experimental Evaluation

Pre-processing results by attribute and data density

Distribution Reconstruction by Clique Finding

Clique finding:

- Pre-processing starts with a set of necessary vertices V_{nec} and a set of possible candidate vertices V_{cand} for the clique.
- It grows V_{nec} and shrinks V_{cand} ending with $V_{\text{nec}} \subseteq V_{\text{elem}} \subseteq V_{\text{cand}}$, where V_{elem} is the set of elementary vertices.
- If Vnec = Vcand, then we are done (special case for sparse data, where o can arise as a volume).
- Otherwise, we extend the sub-clique on V_{nec} to a larger one using a special-purpose algorithm (target is clique on N vertices).
- Several heuristics are employed in our algorithm; these rely on various graph algorithms as sub-steps, including Luby's algorithm for finding maximal independent sets.

Distribution Reconstruction by Preprocessing: Experimental Evaluation

Overall experimental results by attribute and data density

A Random Graph Model for Distribution Reconstruction

- We can also build a probabilistic model of the graph in our attack.
 - Assume data is uniformly distributed, so database counts follow a multinomial distribution.
 - Approximate each count by a Poisson distribution; volumes of ranges are also then Poissonian.
- From this we can estimate that the initial graph has about $2N + N^3/8(\pi R)^{1/2}$ vertices.
- We can also show that the graph has about $N^2 + N^7/80(\pi R^3)^{1/2}$ edges.
- Edge density is then O(N/R^{1/2}).
- Applying results from random graph theory we find that, to ensure O(1) cliques, we
 need R=Ω(N²).
 - This assumes we have a random graph we manifestly do not!
- This bound on R matches well with what we observe in our experiments with HCUP data: for R above N²/2, the attack works well; for R below N²/2, it tends to fail.

Summary of Attacks from [GLMP]

Distribution reconstruction in $\approx N^2 \log N$ queries for uniform ranges, using only volume leakage, provided R = O(N²).

Attack	Req'd leakage	Other req'ts	Suff. # queries
KKNO16 - DR	Volume	Uniform queries	O(N4 log N)
DR	Volume	$R = O(N^2)$	O(N ² log N) for uniform queries
Update data recovery	Volume	$R = O(N^2)$	O(N) (random graph model)
Online query recon	Volume	Auxiliary dist.	Experimental

Conclusions

Conclusions

- Many clever schemes have been designed, enabling range queries on encrypted data.
 - OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15], FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,...
- Second-generation schemes defeat the snapshot adversary (with caveats).
- It is important to analyse impact of leakage of these schemes.
- No known scheme offers meaningful privacy against a persistent adversary (including server itself).
 - In realistic settings, N logN queries suffice; even less if auxiliary distribution + rank leakage is known.
- One can apply ORAM to hide the access pattern leakage, but then performance suffers and volume attacks are still possible.
 - And were already possible for a network attacker!

Future Work

- More research is needed!
- Overall goal: since perfect security is too expensive, we need to raise the bar for the attacker without hurting performance too much.
- And for schemes supporting richer classes of queries than just range queries.
- Some kind of ORAM with limited locality? (Sacrificing ORAM's strong obliviousness guarantees for better performance.)
- Exploration of the effectiveness of adding padding and/or noise in preventing attacks.